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Motivation
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= Develop a CO/gpar/son for RCS of targets due to
excitation by OAM beams relative to RCS due to
traditional plane wave illumination

» Develop a method to compute RCS from physical
sources (antenna) as well as analytical expression
%eneraz‘/n such beams such as Laguerre-Gaussian,

ermite-Gaussian, etc.
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OAM Modes from a Uniform Circular Array

Ground Radius = 58.5mm
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Modal Significance

Azimuthal Mode Decomposition for Excited Mode ¢ = 1
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RCS of Scatterers Placed in the Vicinity of Spatially Varying Waveform

» For a problem space containing local sources (antennas) which radiate spatially varying waveforms as well as
scattering objects, the resulting far field radiation is the sum of:

» Radiated fields from the local antennas
» Scattered fields from the scatterers

« We would like to calculate the scattered field from the scatterers only neglecting the radiation from the sources

« Therefore, we propose a two-step simulation process

Computational domain with local sources such as

antenna arrays exciting different OAM beams (ﬂ) O

Single or multiple scatterers can be present in the
same computational domain. antenna scatterer
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RCS of Scatterers Placed in Near Field of Local Sources

+ Step1l Imaginary closed surface
» Simulate the problem space including the sources and the scatterers
. . ]s,total Ms,total
+  Capture currents Js to¢qr and M ¢orq; ON closed imaginary surface /
« Step 2
. . Step 1
» Simulate the problem space with the presence of the sources only @
+ Capture currents Js incigent aNd Mg incigene ON the same closed
imaginary surface Antenna
scatterer
» Use the currents from the two steps above to calculate the
fictitious currents due to the scattered fields from the scatterers
only _ Flux capturing The same Imaginary
]s,scattered - ]s,total - ]s,incident plane with closed surface
area A

Ms,scattered = Ms,total - Ms,incident

« Use these scattered currents to calculate the far scattered fields
power density from the scatterers

- Capture the incident power density on the flux capturing plane 1 Step 2

\
]s,incident\ Mg incident

« Normalize the scattered fields to obtain the RCS.

RCS(Q, ¢) — 711_{{}0 <4T[A1‘2 I;?Cdt> Antenna Scatterer replaced

. by free space
inc y P
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Results Validation against Traditional Plane Wave RCS

= We compared results obtained from the local source two
step method with traditional plane wave RCS

: : : PE
» The local source is a dipole with length D = 1/2 parallel to . C= /2 4
the x-axis ?
= PEC sphere with diameter 14 is located at 60z, where
2
Zpp = %. A large distance is chosen to approximate a Flux Capture Plane 607.. = 301
plane wave "
Z
= These results are to demonstrate that the two-step method Y
with sources at such a far distance from the scatterer is in ~ i
good agreement with traditional RCS based on plane wave y V)

incidence
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RCS of a PEC Sphere due to Dipole vs. Plane Wave

$ =0
-20 T T T T i 3
— RCS;y; (Local Source)
95 —— RCSy,; (Plane Wave)
£
7}
m
B30+
[7p]
O
[h'd -35L
_40 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180
6 (degrees)
¢ = 90°
-20 T T T T T T T =
—— RCSy,; (Local Source)
= RCSy; (Plane Wave)
& 251 |
m
&
3
& -30 - 5
_35 | 1 1 | 1 1 1 |
0 20 40 60 80 100 120 140 160 180
6 (degrees)
ELECTRICAL ENGINEERING
1/12/2026 ) COLORADO SCHOOL OF MINES

60
20
120
150 150
180
60 60
920 90
120 120
150 150

180

AKL

— RCS;ot (Local Source)
- RCS;t (Plane Wave)




Simulation Method Comparison

= The two-step technique is applicable to any simulation method

= Results are shown comparing scattered fields from a PEC Sphere using method of
moments (MoM) and finite difference time domain (FDTD)
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RCS of a PEC Sphere due to Radiation from a Circular Array of Dipole Antennas

= UCA of Ndipoles parallel to the x-axis backed by a circular PEC

ground plane. Producing x-polarized SVW wave F=28.75GHz
= N=8 dipoles, arranged in circular array of radius 177mm
= Circular ground plane of radius 58.5mm

= Dipole height above ground plane is 9mm

= Dipole nexcitation phase (¥,) determined by element 17 position

= Azimuth position ¢, = tan™! (yn),n =0,1,..,N Flux Capture Plane

Xn

= Excitation Phase ¥,, = ¢/!%n 60z7r = 3504

9mm (1/4)
X /

Ground Plane
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UCA Radiation Patterns

PEC

Far Field patterns of modes 0-2 are shown without the scatterer e = 1/2
We estimate the peak intensity direction [8,4, ¢4] to determine
where to place the scattering object
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RCS of a PEC Sphere in the YZ Plane for Modes 0-3 and Plane Wave

The ¢p-component of the RCS from mode 0 and from the x-polarized plane wave are in good agreement.
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RCS of a PEC Plate in the YZ Plane for Modes 0-3 and Plane Wave

The direction of the maximum RCS for mode 2 is different than those of modes 0, 1, and 3.
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RCS of a PEC Ogive in the YZ Plane for Modes 0-3 and Plane Wave
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Conclusions and Future Work

= The presented method is effective for computing the RCS from local excitation sources

= The results were compared with those of a plane wave illumination when the sources are
distanced away from the scatterer.

= The results of RCS of targets due to structured SVW beams provide some opportunities for
extracting new features from Target's RCS data.
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PEC Plate in Different Far Field Positions

Max Intensity Direction (Previous Normal Direction
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PEC Plate in Normal Direction - OAM Mode £ = 1
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PEC Plate in Normal Direction —- OAM Mode ¢ =2
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PEC Plate in Normal Direction - MoM RCS compared to Plane Wave
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