
A ZONE-BASED, UNDERGROUND LOCALIZATION

SYSTEM USING PASSIVE REVERSE RFID AND

IMU TECHNOLOGIES

by

Robert D. Jones

A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of

Mines in partial fulfillment of the requirements for the degree of Master of Science

(Electrical Engineering).

Golden, Colorado

Date

Signed:
Robert D. Jones

Signed:
Dr. Atef Z. Elsherbeni

Thesis Advisor

Golden, Colorado

Date

Signed:
Dr. Peter H. Aaen

Professor and Head
Department of Electrical Engineering

ii

ABSTRACT

In order for miners to mitigate hazardous dust concentrations underground, they must

first identify where in the mine the high concentrations occur. To do this, they wear dust

monitoring units to track the amount of dust in the regions they travel and recording their

locations by hand. This is extremely time consuming for large underground mines making

an automated localization system a necessity. Underground localization systems typically

use massive amounts of infrastructure such as active radio beacons or modulated light

sources that require connection to power and communication infrastructures making them

unfeasible for cost-effective and rapid deployment.

This thesis describes a wearable system that uses a combination of IMU dead

reckoning, reverse passive RFID trilateration, and map matching to localize a user in both

an indoor and underground environment. The only infrastructure required for the system

to operate are clusters of passive RFID tags sparsely placed throughout the area. IMU

dead reckoning localizes the user in between tag clusters while the RFID tag clusters reset

the drift errors accrued by the IMU. Map matching projects the dead reckoned values onto

a path, sacrificing a user’s lateral distance from the path for a massive increase in accuracy.

The system presented successfully localizes a user at Colorado School of Mine’s Edgar

experimental mine.

iii

TABLE OF CONTENTS

ABSTRACT . iii

LIST OF FIGURES . vii

LIST OF TABLES . xii

LIST OF ABBREVIATIONS . xiii

ACKNOWLEDGMENTS . xv

DEDICATION . xvi

CHAPTER 1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Previous Solutions . 2

1.3 Radio Frequency Identification . 7

1.4 Proposed solution and Thesis Layout . 8

CHAPTER 2 DATA ACQUISITION PROTOTYPE 10

2.1 Complete System Overview . 10

2.2 Inertial Measurement Unit . 12

2.3 RFID Reader . 16

2.4 RFID Tags . 17

2.5 Circularly Polarized Antennas and Mounts . 19

2.6 Power Circuit . 22

2.7 Raspberry Pi and Bash Scripting . 24

2.8 Acquisition Code . 26

iv

2.8.1 RFID Reader Control . 27

2.8.2 IMU Control . 28

2.9 Conclusion . 29

CHAPTER 3 SOFTWARE . 32

3.1 Overview . 32

3.2 Pre-processing Measurements and Scripts . 32

3.2.1 Look-Up-Table Generation . 35

3.2.2 Zone Information . 40

3.2.3 Zone Connection Generator . 42

3.2.4 Map Approximation . 44

3.2.5 RFID Data Interleaver . 45

3.3 Post-processing . 46

3.3.1 RFID Categorization . 49

3.3.2 IMU Zone Assignment . 50

3.3.3 RFID 2D Position . 52

3.3.4 IMU Pedometer . 59

3.3.5 IMU Heading . 62

3.3.6 Combined 2D positioning . 64

3.3.7 Geometric Point-to-Curve Map Matching 66

3.3.8 Plotting . 72

CHAPTER 4 SYSTEM MEASUREMENTS . 73

4.1 Experimental Results . 73

4.1.1 Brown Building Experiment . 73

v

4.1.2 Edgar Mine Experiment . 76

CHAPTER 5 DISCUSSION, FUTURE WORK, AND CONCLUSION 85

5.1 Discussion . 85

5.2 RFID System Improvements . 88

5.3 IMU Improvements . 90

5.4 Towards a Real-Time Algorithm . 91

5.5 Conclusion . 92

REFERENCES CITED . 94

APPENDIX A COST BREAKDOWN OF THE PROTOTYPE 101

APPENDIX B DATA ACQUISITION CODE . 102

APPENDIX C MATLAB CODE . 106

vi

LIST OF FIGURES

Figure 2.1 Hardware block diagram of the localization prototype. 11

Figure 2.2 Complete wearable prototype. The vest contains two RFID readers,
IMU, battery, and power circuit. The touchscreen contains the
raspberry pi which connects to the power circuit, IMU, and RFID
readers. 11

Figure 2.3 Sparkfun 9 DoF Inertial Measurement Unit. 12

Figure 2.4 Illustration of pitch, roll, and yaw. 14

Figure 2.5 Sample IMU Data. Column 1 is the IMU time in milliseconds. Columns
2-4 are the accelerometer data in g’s . Columns 5-7 are the gyroscope
data in degrees per second. Columns 7-9 are the magnetometer data in
micro-Teslas. Column 10 is the Raspberry Pi’s time in seconds. 15

Figure 2.6 ThingMagic M6e Reader development board. 16

Figure 2.7 RFID data from one reader. Column 1 is the tag ID. Column 2 is the
phase of the received tag response in degrees. Column 3 is the RSSi of
the received tag response in dBm. Column 4 is the reader number.
Column 5 is the Raspberry Pi’s time in seconds. 17

Figure 2.8 Linearly polarized RFID tag with thin medium-density fibreboard
(MDF) backing. 18

Figure 2.9 RFID antennas and the 3D printed mount for attachment to the
hardhat. 21

Figure 2.10 Fabricated power supply circuit which contains the UBEC and the
DC-to-DC converter as well as the toggle switch for turning on the
device. 23

Figure 2.11 Electrical schematic for the power supply to all devices as well as the
USB connections required to control all devices. 23

Figure 3.1 Flow diagram of all of the pre-processing scripts and files that feed into
the post-processing script. 34

vii

Figure 3.2 First measurement scenario to create data for the look-up-table. The
diagram on the left shows the setup of the measurement. The right
picture shows the tag attached to the wall for this measurement. The
red triangle represent the RFID tag and the green rectangle represents
the antenna. 37

Figure 3.3 Second measurement scenario to create data for the look-up-table. The
diagram on the left shows the setup of the measurement.The distance
used for the look-up-table is the length from the center of the tag to the
center of the antenna. The red triangle represents the RFID tag and
the green rectangle represents the antenna. The right picture shows the
location of the tag for this measurement. The red oval is the location of
the tag under test. 37

Figure 3.4 Third measurement scenario to create data for the look-up-table. The
diagram on the left shows the setup of the measurement. The distance
used for the look-up-table is the length from the center of the tag to the
center of the antenna. The red triangle represents the RFID tag and
the green rectangle represents the antenna. The right picture shows the
location of the tag for this measurement. The red oval is the location of
the tag under test. 38

Figure 3.5 Look-up-table generated from the measured data in Edgar mine. 39

Figure 3.6 Contents of the CSV file that is generated manually by the user. The
first column is the zone number, the second column is the last three
number of the tag ID, the third column is the X coordinate of the tag
in feet, and the fourth column is the Y coordinate in feet. This file was
used for the Brown building measurements. 41

Figure 3.7 Contents of the CSV file that are output by the zone information
generator script. The top row is clipped off due to the length going out
of bounds of the screen. Each row corresponds to a different zone. This
file was used for the Brown building measurements and is the output of
the zone information script where Figure 3.6 was the input of. The ’u’
at the end of the row starting with 2, says that the zone is of type
’undefined’ which will have different logic applied to it in the
localization script than the rows with the ’s’ at the end. 41

viii

Figure 3.8 Zone connection diagram of Edgar mine. The figure on the left is a
visual representation of the struct array where the green boxes signify a
valid connection and everywhere else is not valid. On this visual
representation, the left and top axis correspond to the zone number.
The figure on the right shows the connections between the different
zones and what angles the zones connect at. Positive angles are defined
as counter-clockwise rotation about the x-axis which is at 0 degrees.
The arrows signify the initial heading for the heading calculations in
the next zone. The tail of the arrow is the zone the user is leaving and
the tip of the arrow is the zone that the user is heading to. 43

Figure 3.9 Approximation map of Edgar mine with lines. Left picture shows a
small section of the full Edgar mine map with the line approximation of
it in red. The right picture is the line approximation displayed in
MATLAB. x’ and y’ are the coordinate system that was used for
recording the tag coordinates and it is different than the coordinate
system that the Edgar mine map uses. The origin dot in the left figure
is the origin point for the prime axis not the Edgar map. The origin
points corresponds to the halfway point in the full Miami tunnel. 45

Figure 3.10 Flow diagram of the post-processing algorithm. 48

Figure 3.11 RFID tag measurements categorized into zones. The length of the lines
corresponds to the length of time that the reader was reading at least
one tag in the zone that it is categorized in. The gap between the lines
corresponds to the absence of RFID readings in between zones. Data
shown are from the Edgar mine measurement. 49

Figure 3.12 Illustration of the IMU zone categorizations. Starting from the left, the
user progresses from zone 1 to zone 2 and finally to zone 3. The large
tinted circles are the approximate areas where the tags can be read.
Zone transitions are indicated by the dotted black lines. The colored
lines indicate which zone the dead reckoned position belong to. The
blue line changes to green as soon as a single tag in zone 2 (green) is
read and the green line turns into red as soon as a single tag in zone 3
(red) is read. 51

Figure 3.13 Distance from the user to each of the tags versus time. The
look-up-table converted the RSSi to the distances shown in the figure.
’L’ corresponds to the left antenna and the ’R’ corresponds to the right
antenna. The tag number corresponds to the last three digits of the tag
ID.This figure also illustrates the swept window across the data. The
window has a fixed width and is stepped through the code, in time,
overlapping the next window by a time set by the user. 53

ix

Figure 3.14 Estimated position of the user through a zone. User traveled from the
bottom left of the figure to the top right. The red diamonds correspond
to the tag locations. The black lines are the walls of the mine. The
dotted red line is the actual path of the user through the zone. The
blue dots are the RFID localized positions. The orange sun marker at
the bottom of the figure is the initial position which is fed into the 2D
positioning function. The shown data are from Edgar mine test in zone
6. 58

Figure 3.15 Magnitude of the time domain acceleration waveform after being
filtered (blue). The red circles correspond to the peaks of the waveform
that the peakfinder function detected. Notice how for the first second
the user is approximately stationary and no peak is detected. Data
were taken from a portion of the IMU measurements during the Edgar
mine experiment. 61

Figure 3.16 Raw data from the gyroscope for each axis (top) and the resulting
heading after cumulative trapezoidal integration of the data (bottom).
The X axis (blue), Y axis (orange), Z axis (yellow) corresponds to
pitch, yaw, and roll, respectively. The user’s yaw axis is used to
calculate the heading for the IMU dead reckoning. Data shown are
from the Edgar mine measurements. 63

Figure 3.17 Simple diagram showing the initial position for the 2D function. The
black line is the dead reckoned user position, from the IMU data, before
the initial position. The red line is the dead reckoned user position after
the initial position. All data still belongs to one zone. 66

Figure 3.18 Diagram of point-to-curve map matching. All lateral position
information is lost as the user’s estimated position is projected onto the
center path. 67

Figure 3.19 The three possible scenarios when matching a point to curve; figure
modified from the one shown in . P0 is the point that is being matched.
P1 is the starting coordinate of a line segment. P2 is the end
coordinate of a line segment. A,B,C,D are geometric quantities used in
the map matching code. The red dot is the map matched point. The
white dot shows where the point would have projected to if the line
extended to infinity. See Listing C.16 . 68

x

Figure 3.20 Pre-map matching user’s estimated positions (left). Post-map matching
user’s estimated position (right). Data taken in the hallway of Brown
building. The solid blue line denotes the positions associated with zone
1. The red line with crosses denotes the positions associated with zone
2. The green line made of circles denotes the positions associated with
zone 3. The solid black line is the center path of each of the hallways as
well as the path the user walked. The red diamonds indicate where the
RFID tags were placed. 71

Figure 4.1 Picture of zone 1 in Brown building experiment. 74

Figure 4.2 Picture of zone 3 in Brown building experiment. 74

Figure 4.3 User’s path in the Edgar mine experiment. User starts at the ’START’
marker and stops at the ’END’ marker, which is right before the
intersection. The blue turn around arrow is where the user turned 180
degrees. 77

Figure 4.4 Picture of zone 1; an exemplary straight section. The red ovals
highlight the tags in view. 78

Figure 4.5 Picture of zone 3; an exemplary narrow intersection with the trolley
acting as a large scatterer. The red ovals highlight the tags in view. . . . 79

Figure 4.6 Picture of zone 6; a straight section full of mining equipment making it
a complex scattering environment. The red ovals highlight the tags in
view. 80

Figure 4.7 Picture of zone 8; an exemplary spacious intersection. The red ovals
highlight the tags in view. 81

Figure 4.8 Another view of zone 8. The red ovals highlight the tags in view. 82

Figure 4.9 Final results of the Edgar mine tests pre-map matching. 84

Figure 4.10 Final results of the Edgar mine tests post-map matching. 84

Figure 5.1 Block diagram for the proposed real-time algorithm. 92

xi

LIST OF TABLES

Table 2.1 Power consumption, voltage, and current of the devices supplied by the
power circuit. 24

Table 3.1 Time breakdown of the pre-characterization steps for the Edgar mine
experiment. The measurement time is also included. 33

Table 3.2 User inputs to the algorithm and their default values 48

Table A.1 List of devices used in the localization prototype and their respective
costs. 101

xii

LIST OF ABBREVIATIONS

Radio Frequency Identification . RFID

Radio Frequency . RF

Inertial Measurement Unit . IMU

Degree of Freedom . DoF

Received Signal Strength Indicator . RSSi

Medium-Density Fibreboard . MDF

Universal Battery Eliminator Circuit . UBEC

Fast Fourier Transform . FFT

Inverse Fast Fourier Transform . IFFT

Look-Up-Table . LUT

Right-Hand Circularly Polarized . RHCP

Left-Hand Circularly Polarized . LHCP

Comma Separated Values . CSV

Decibels-milliwatt . dBm

Zone Categorization Algorithm . ZCA

Clockwise . CW

Counter-Clockwise . CCW

Micro-Electromechanical Systems . MEMS

Software Defined Radios . SDR

Integrated Development Environment . IDE

xiii

Virtual Private Network . VPN

Integrated Development and Learning Environment IDLE

Angle-of-Arrival . AoA

Time-of-Arrival . ToA

Programmable Intelligent Computer . PIC

Global Navigation Satellite System . GNSS

Global Positioning System . GPS

Pedestrian Dead Reckoning . PDR

Bluetooth Low Energy . BLE

Ultra-wideband . UWB

Access Point . AP

Integrated Circuit . IC

Continuous Wave . CW

xiv

ACKNOWLEDGMENTS

I would like to thank Joseph Diener for all of the guidance and encouragement he has

given me these past couple of years as well as making a fantastic antenna for the prototype

and helping me with the IMU coding. Kyle Patel, thank you for all of your help in getting

me started on this project and for all of the advice you have given me throughout my

undergraduate and graduate time. Thank you Yiming Chen for all of the assistance in

acquiring data during the Brown building tests. Rachel Lumnitzer and Mike McNulty,

thank you for all of the help in setting up the many tags inside of Edgar mine. Also Mike,

your quick lessons on bash scripting saved me a tremendous amount of headache in

creating the acquisition code for the prototype. Dr. Jürgen Brune, thank you for your

continuous suggestions over the course of the project as well arranging all of the trips to

the Edgar mine. Dr. Atef Elsherbeni, thank you for being my advisor these past five years.

You have provided me with so many opportunities that have enabled my success to a point

I could have never dreamed of. Dr. Kate Remley, thank you for all of your support these

past four years as well as teaching me how to be a NIST-grade metrologist. Also, thank

you for your patience as I multi-tasked college, work, and graduate research. Last but not

least, thank you to my parents and friends for all of the love, understanding, and support

you all have given me the past couple of years.

The work is funded by the Alpha Foundation under contract number AFC820-50 and

the National Institute for Occupational Safety and Health (NIOSH) under contract number

75D30119C05412.

xv

To my family: Susan, Bob, and Andrew.

xvi

CHAPTER 1

INTRODUCTION

1.1 Motivation

Often traditional localization methods rely on GPS and other GNSS technologies in

order to function, and hence are unusable in the GPS-denied environment. Routine

operation of a mine can lead to harmful concentrations of dust and other particulates

building up in isolated areas, which present a health risk to miners. Dust concentration

hazards are especially harmful in coal mines as they can cause explosions such as the one

that killed 29 miners in 2010, [1]. For coal dust mitigation, the miner sprays a water and

rock dust mixer on top of the coal dust to render it inert [2] as well as use airflow routes

through a mine to move the dust out [3]. In order to mitigate the dangerous dust build ups

in a mine, the miner must be able to map where the dangerous dust concentrations are.

Miners wear dust monitors to track the amount of dust they are exposed to as they patrol

a mine. Mapping the dust concentration requires the position of the miner which is

typically done by hand which is extraordinarily time consuming for large mines. There is a

need for an affordable, robust, localization system that requires very little infrastructure to

operate and can provide accurate positions to aid in mapping sensor readings.

The dust monitor used for the dust mapping is the PDM 3700 as described in [4]. This

unit takes measurements once per minute and requires post-processing software to obtain

the dust concentrations. Dust mapping is an active area of research that is also covered

within the scope of the two grants that support the work of this thesis but dust mapping

itself is not within the scope of this thesis. This thesis focuses on the miner localization

system which has the primary purpose of providing the miner’s position to the dust

mapping software. The presented localization system does not control the dust monitor

but will operate in parallel with it so that the user’s position over time can be matched

1

with the user’s recorded dust concentration over time.

The localization system must have the following characteristics:

• The system must be body-wearable, restricted to only the helmet and trunk of the

user. Foot-mounted solutions are not ideal due to contamination.

• The system must have resolution on the order of feet but not inch-level accuracy as

the dust monitor only samples once a minute and the user can travel many feet

during this time.

• The system cannot rely on any power or wireless communication infrastructure in the

mine beyond passive infrastructure, such as RFID tags. The infrastructure installed

must not require constant maintenance.

• The system cannot rely on constant contact with any communication infrastructure

because mines easily disrupt wireless communications.

• The system must be scalable to a large environment.

• The system must be easy and fast to deploy.

• The system must be as low-cost as possible.

These requirements are very stringent and eliminate many of the previously proposed

localization techniques as viable options.

1.2 Previous Solutions

The fields of indoor/underground localization are heavily saturated by decades of

potential solutions for localizing people and vehicles. These solutions invoke a wide range

of sensors including: RFID, ultra-wideband communication, Wi-Fi, Bluetooth, inertial

position estimation, communication using light, magnetic field classification, mapping,

sensor networks, and ultrasonic. This section will summarize a couple of the previous

solutions to this challenge.

2

The vast majority of underground localization solutions are aimed not at creating a

map of a sensor reading, but rather at real-time tracking of miners in a mine where their

positions are transmitted back to a central hub. These solutions usually use wireless access

points, zigbee sensor networks, RFID readers, or mesh networks to communicate with the

miners. Solutions such as the one in [5] and [6] use Zigbee sensor nodes scattered

throughout the mine to communicate with each other and localize miners that move in

their proximity. Wifi fingerprinting is another possible solution as described in [7], where a

miner will detect multiple wifi access points (AP) and based on the MAC address of the

AP’s and the received signal strength indicator (RSSi), be able to determine their most

likely position. Another fingerprinting solution is presented in [8] where the author

measured the RSSi of the leaky feeder lines at various positions to create a ”radio-map”.

Using this map, users can match the pattern of RSSi values they receive as they advance

through the mine to the ”radio-map” to localize themselves. This technique had a

resolution of 40 meters which is too coarse for dust monitoring. Visible light

communication (VLC) as discussed in [9], [10], and [11] involves the use of lamps placed at

the roof of the tunnel that act as over-the-air light transceivers sending optical signals to

the miner’s helmet which then it turns sends data back to the lamps. A similar solution to

VLC is presented in [12], where the miner projects a unique shape at the top of their

helmet onto blackboards placed throughout the mine where a camera network then detects

this shape to determine where the user is. It is also popular to place RFID readers

throughout a mine and place the tags on the miner to localize them, as described in [13].

All of these techniques require a tremendous amount of infrastructure to install into the

mine and are therefore not viable solutions to the problem.

The work presented in [14] uses a combination of IMU and active beacon technologies

to localize the miner. The active beacons are placed in different place in the mine and emit

an ultrasonic as well as an RF signals. The miner wears a receiver that receives both of

these signals, using the ultrasonic signal to determine distance from the user to the beacon

3

via time-of-flight and using the RF signal to synchronize the beacon and the receiver in

time. Once the distances from the receiver to three beacons are known, the localization will

use a least-squares trilateration approach to determine the user’s coordinate. It is assumed

that all of the beacons will have their coordinates pre-determined at the time of their

installation. The active radio beacon positions are fused with an IMU to get a sensor fused

position. This work uses an embedded system to record the IMU and receiver

measurements where data are then offloaded onto a computer running MATLAB to

execute the post-processing algorithm. It was not clear from this work if the laboratory it

was tested in was underground or just indoors. This work demonstrates a potential

solution using active beacons, least-squares trilateration, and IMU data.

The work in [15] describes an indoor localization algorithm focusing solely on the IMU

contained within a smartphone to perform pedestrian dead reckoning (PDR). They use a

Kalman filter to fuse the accelerometer and gyroscope data to calculate the user’s pitch

angle over time. Using the pitch angle, they determine when the user took a step. The

highest maximum amplitude of the pitch angle and the lowest minimum amplitude of the

pitch angle, combined with a linear regression model is used to extract a user’s step length.

This step length is applied to the dead reckoning as a fixed value through the entire

measurement. This work uses another Kalman filter to fuse the gyroscope and

magnetometer readings to determine the user’s heading. Once the step length, step

occurrence, and user’s heading are determined, the author presents a simple dead reckoning

equation to determine the user’s position. The tests performed were in an indoor

environment where the system demonstrated good localization around simple paths with

around 0.67 to 1 meter of error. This source represents a potential IMU-only solution to

user localization.

The work in [16] discusses many different technologies that are commonly used in

localization systems for underground mines. This overview discusses the drawbacks in

inertial localization, Wi-Fi fingerprinting, passive RFID proximity localization, map-based

4

positioning, very-low frequency radio wave navigation, and magnetic field positioning.

Beyond this overview, the author tests four different technologies: Bluetooth low energy

(BLE), magnetic field positioning, IMU dead reckoning with map matching, and

ultra-wideband (UWB) in a small section of an underground mine tunnel. The author uses

the BLE system to get the user’s coordinate narrowed down to an area and then uses the

IMU dead reckoning to finely estimate the user’s position within that area. The IMU dead

reckoning is determined using a step counter with a fixed step length estimate. To

determine the distance from a BLE node to the user’s location, a polynomial curve fit

converts the received signal strength of the BLE node to distance. However, the variation

of the received signal strength for a given distance almost has a spread that is over the

entire range of possible RSSi values. If the BLE system is non-operational, the localization

systems uses magnetic field data instead, comparing it to the entire mine’s magnetic field

database and seeing where the point of highest correlation is. The point of highest

correlation will be roughly the area where the miner is. The major downside to magnetic

field positioning is that there is a significant amount of pre-characterization work that goes

into building the database and will give inaccurate readings if machinery or other metallic

objects are moved around inside of the mine. At the end of the positioning, the algorithm

uses map matching to align the localized path to the map. The testing was done in a small

section of an underground mine with a very simple path. This source shows an underground

localization solution that fuses three different types of sensors to get the user’s position, as

well as good general overview of all of the flaws of other technologies used in localization.

Another significance of this work is the use of a polynomial curve fit to estimate the RSSi

of the BLE to distance, even though it has tremendous variation around the fitted curve.

Passive RFID is not as popular in underground mines as active RFID or radio nodes

are, but it is a solution that others have leveraged in the past. The work presented in [17]

and [18] use passive RFID tags as ”landmarks” to map out a mine. The passive RFID tags

were not used to directly localize the user inside of the mine but as anchors to stitch

5

together the various map sections taken from their laser scanner data. Interestingly, they

did not need to pre-record the 2D coordinates of the RFID tags, instead they just recorded

the unique tag ID at the location they read them and then stitched together all of the

various maps by using the landmarks as reference points. In [19], the researchers place

passive RFID tags at intersections of the mine to assist the loader in autonomously driving

through the mine. The reason why passive RFID has not been adopted into any localization

solution is because the read range is thought to be too short, according to [20], and [21].

A further subset of passive RFID is whether the system performs tag localization, or

reader localization. Tag localization in an underground or indoor environment is where

many RFID readers are scattered throughout an area and will track the tag that is

attached to a person. Reader localization, also called reverse RFID localization, is where

tags are placed throughout an environment and the reader localizes itself off of the tag

reads. In [22] the researchers present an indoor localization system that uses hundreds of

tags placed all over a floor to localize a reader. The system presented in [23], uses multiple

tag reads along with IMU measurements to determine the angle of arrival the reader is

from the tag array. Knowing the angle of arrival information from a reader to a set of

RFID tags is sufficient to localize the reader as described in [24]. In 2011, NIOSH describes

in [25] the contract that they awarded to L3 communications for their underground reader

tracking system, the ”Tru-Tracker Precision Location System,” but this used active UWB

beacons that broadcasted their location. The overview paper by NIOSH in 2012, [26],

theorizes the use of passive RFID localization inside of mines where the miner localizes

themselves off of RFID tags and then transmits this position to a radio but at this time, no

one had implemented a successful passive RFID reader localization system underground.

To our knowledge, no other researchers have achieved this, making the system presented in

this thesis the first successful passive reverse RFID localization system for mining

personnel underground. None of the individual components of this thesis are novel: IMU

dead reckoning, zone-based error correction, passive reverse RFID trilateration; but the

6

combination of all of them in a complete system that was tested underground successfully

is unique.

1.3 Radio Frequency Identification

The field of RFID technology has been around for over half a century, with many

applications in object labeling, tracking, access control, and credit card commerce just to

name a few. RFID spans a wide range of frequency bands such as the near field

applications which reside in the 120-150 kHz and 13.56 MHz bands, and the far field

applications which reside in the 433 MHz, 902-928 MHz, and 2450-5800 MHz bands [27]. In

these bands, there are three different types of RFID tags: passive, semi-passive, and active.

Passive tags harvest a portion of the energy off of the query signal of the reader, excite

their inner integrated circuit to modify the query signal waveform, and then re-broadcast it

back to the reader. Active RFID tags do the same thing except they do not harvest the

incoming query signal but instead rely on an internal battery to emit their response.

Semi-passive tags use battery power to operate the internal logic circuits but do not use it

to amplify their response signal [27]. Passive tags are an attractive solution as they do not

have batteries, have life spans greater than 20 years [27], but at the expense of relatively

short read ranges. Active tags are an attractive solution as they have relatively long read

ranges but with higher cost and a much shorter lifespan due to their battery. The tags used

for this thesis are 915 MHz passive tags. RFID readers are designed in one of two ways: as

a montostatic reader which uses a circulator and one antenna to perform simultaneous

transmit and receive, or as a bistatic reader which uses two separate antennas instead. The

readers used in this thesis are monostatic readers [27]. The RFID signals are restricted to a

channel bandwidth of 500 kHz and a maximum data rate of 85 kbps. If multiple readers in

the same environment are querying tags, other techniques such as multiplexing and

frequency hopping will need to be used in order to prevent interference [27].

The complete tag read operation is described in detail in [27]. The reader first

broadcasts a continuous wave (CW) query signal. This signal then travels over the air to

7

the tag which then receives it, splits a portion of the signal through a rectification circuit,

and then excites the tag’s on-board integrated circuit (IC). Once turned on, the IC uses a

switch to modulate its load between two different impedances to encode its ID and other

information (depending on the tag’s class) to the received signal. The

impedance-modulated signal is then backscattered (sent back) to the reader. The complete

read operation takes place on the order of milliseconds, so many tags can be read within a

very short time period. The RFID readers use various protocols such as tag talk first

(TTF) or reader talk first (RTF) to prevent interference between tag responses as well as

between reader responses [27].

1.4 Proposed solution and Thesis Layout

A hybrid localization algorithm is developed based on incorporating RFID passive tags,

IMU sensor readings, as well as map matching techniques. The IMU sensors produce

reasonable estimates of a user’s linear travelled distance but produces poor heading

information at longer time scales due to small cumulative errors compounding into larger

ones. In contrast, RFID tags can be used to produce localization of a user to a given area

without the cumulative errors, although fine resolution is difficult to achieve. These

different techniques produce superior accuracy when combined than any individually.

By placing a series of RFID passive tags inside a mine, zones are created that have a

priori known positions that are used to reset the cumulative errors in IMU estimation.

Multiple RFID tags are located in each zone to allow for the received signal strength

(RSSi) based methods to produce a more accurate initial estimate of the user’s location in

a zone. The positional data can then be synced using the timestamps with other sensors

the miner is wearing, such as a dust monitor, to create a map of a mining safety metric

across the mine. The presented system uses a post-processing localization algorithm rather

than a real-time positioning algorithm. Since the focus of this research was to map hazards

in a mine, there is not an immediate need to turn this into a real-time algorithm. The

developed system is optimized to be low-cost, robust, and accurate. By wearing the

8

expensive reader, hundreds of cheap passive RFID tags can be placed throughout the mine

with indifference to other communication infrastructure. This is inverse from other

algorithms which use readers setup in various places of the environment and read tags on

the users. This system does not require other infrastructure improvements beyond the tag

installation making it easy to install. The system is robust because the reader needs to

read at least one tag in a zone to be categorized and only three tags to determine the

initial position. Constant tag reads are not required. Zones can be spaced far apart giving

the user the ability to tradeoff positional accuracy with the number of tags required to

divide up an environment. The use of more than the necessary number of tags in a zone,

will allow the system to be operational even when mining hazards lead to the destruction

of a couple of tags. Finally, the system exhibits greater accuracy over only IMU dead

reckoning algorithms by the identification of zones using RFID tags and the application of

the map matching process.

This thesis is organized into 4 chapters. Chapter 2 describes the data acquisition

hardware and software used in the prototype. Chapter 3 describes the pre-characterization

needed for the algorithm to work, as well as the post-processing MATLAB code for

determining the user’s position in the mine. Chapter 4 describes the experiments in Brown

building and Edgar mine. Chapter 5 discusses the results and future work, and finally

concludes the thesis.

9

CHAPTER 2

DATA ACQUISITION PROTOTYPE

2.1 Complete System Overview

The first requirement of the localization system is that it needed to be a body-wearable

system that the miner could wear during their shift and not rely on any power or

communications infrastructure inside the mine. Passive RFID tags are extremely cheap

and require very little work to install into a mine so these were permissible infrastructure

additions to the mine. In order to provide the data necessary for the localization

algorithm, the system needed to record two main sets of data: human locomotion data of

the user, and RFID tag readings. The last requirement of the system was that it needed to

maximize the read range of the system to the RFID tags so the user could walk in both

narrow corridors and large openings and still record RFID data. The final prototype that is

described in this chapter used commercially available components, not including the

antennas, that were easily operational at the expense of a compact system. The entire cost

of the prototype system is $2,572. The breakdown of this cost is listed in Table A.1 in

appendix A. Future improvements on this system will aim at making the system more

compact and ideally fit on a miner’s helmet or on a belt.

The prototype localization system uses two RFID readers, two custom-made antennas,

a power supply circuit with a battery, an inertial measurement unit (IMU), and a

Raspberry Pi. Figure 2.1 shows a block diagram of the prototype, and Figure 2.2 shows the

final prototype, without the hardhat. The user controls the system through the Raspberry

Pi which is connected to a touchscreen. Collected data are recorded to a Raspberry Pi,

that is accessed at the end of a shift using USB or Wi-Fi to offload the data to a

post-processing computer running MATLAB. The remainder of the chapter will discuss

each of these components in detail as well as how they are controlled.

10

Figure 2.1: Hardware block diagram of the localization prototype.

Figure 2.2: Complete wearable prototype. The vest contains two RFID readers, IMU, bat-
tery, and power circuit. The touchscreen contains the raspberry pi which connects to the
power circuit, IMU, and RFID readers.

11

2.2 Inertial Measurement Unit

The IMU is an obvious choice to obtain human locomotion information and is used

extensively in many other localization algorithms. The IMU chosen for the prototype is the

Sparkfun Razor nine degree-of-freedom (DoF) sensor shown in Figure 2.3 and contains

three accelerometers, three gyroscopes, and three magnetometers, one for the X,Y, and Z

axis. The IMU uses a SAMD21 processor which is programmed using the Arduino IDE.

The Arduino library to run the IMU is provided in [28]. It is mounted at chest level on a

vest to record the user’s trunk movement. Foot mount was avoided as the miners did not

want to attach the device to their boots and head mount was avoided because the user

needs freedom to look around as they are moving through a mine.

Figure 2.3: Sparkfun 9 DoF Inertial Measurement Unit.

The accelerometer is an micro-electromechanical (MEMS) sensor that works by

recording the capacitive fluctuations from a plate suspended above the chip’s surface held

12

up by tiny microscopic springs as described in [29]. Changes in acceleration deflect the

plate creating an output signal from the capacitors that is proportional to the applied

acceleration. The units of the measured acceleration are of m
s2

.

The three axis gyroscopes are also MEMS sensors that operate similarly to the

accelerometer in the sense that they use integrated capacitors to transduce the vibrations

on the chip’s microscopic spring-mass system to an analog value. This chip is described in

more detail in [30]. The axis of the gyroscope are not described in X,Y, and Z but are

instead described by the angular velocity along the axis of yaw, pitch, and roll. Using an

airplane as an analogue, the yaw axis is the side-to-side turning of an airplane; the roll axis

is the action where the airplane turns its left wing up right wing down, and vice versa; and

the pitch axis is the up-and down orientation of the nose of the airplane to the Earth. For

any system, the gyroscope can be oriented in such a way where the object’s yaw axis is

about the X, Y or Z axis or a combination of them. This prototype has the IMU oriented

so that the Y-axis is the user’s yaw axis, the X-axis is the user’s pitch axis, and the Z-axis

is the user’s roll axis. See Figure 2.4 for an illustration of yaw, pitch, and roll pertaining to

the miner. For this system, the yaw axis is the most important as it directly describes the

user’s heading. The output data from the gyroscope’s yaw, pitch, roll axis are in units of

degrees

s
.

13

Figure 2.4: Illustration of pitch, roll, and yaw.

The three axis magnetometer records the magnetic field about each of the X,Y and Z

axis, in units of Gauss, by monitoring the voltage changes across the magnetoresistors as

described in [31]. The three axis magnetometer is not used in the localization algorithm

but the data are always recorded by the prototype. The complex, metallic nature of the

mine infrastructure, mining equipment, and variations of the ore composition can all throw

off the magnetometer readings. The material in [32], and [33] propose solutions to the

underground magnetometer challenges but these were not incorporated into the

localization system presented here due to additional infrastructure requirements and the

addition of more time-intensive pre-characterization tasks. Future work could be to

incorporate a robust magnetometer algorithm into the localization system to improve the

positioning estimate.

The prototype communicates with the Razor IMU over USB using the Raspberry Pi

which monitors a serial port where the IMU data is streamed to. The Raspberry Pi sends

ASCII characters to the IMU’s on-board processor to control what information is being

recording as well as when to stop and start the recording. A reference for all of the

capabilities of the sensor can be found in [34]. This IMU can output the raw data from

each sensor as well as the quaternions or Euler angles from the fusion of all three sensor

14

readings. The localization system just uses the raw data from the three accelerometers and

three gyroscopes and ignores the magnetometer data. The IMU outputs the raw sensor

readings from all nine sensors which the Raspberry Pi stores in a text file in the format

shown in Figure 2.5. The first column is the IMU system time in milliseconds; columns two

through four are the accelerometer data in g’s; columns five through seven are the

gyroscope data in degrees per second; columns eight through ten are the magnetometer

data in micro-Teslas; and the last column contains the Raspberry Pi’s time stamps when

the reading was received, in seconds.

Figure 2.5: Sample IMU Data. Column 1 is the IMU time in milliseconds. Columns 2-4 are
the accelerometer data in g’s . Columns 5-7 are the gyroscope data in degrees per second.
Columns 7-9 are the magnetometer data in micro-Teslas. Column 10 is the Raspberry Pi’s
time in seconds.

In this prototype, the IMU’s accelerometers are used as a step counter and the

gyroscopes are used to track heading. Together, these two pieces of information allow the

localization algorithm to dead reckon the user. Currently, this dead reckoning only works

when miners are moving in the mine on-foot. This solution will not work if the miners are

traveling in a vehicle, however this dead reckoning system could be replaced with a

vehicular dead reckoning system for this case. Vehicular dead reckoning systems are

typically easier and more accurate to implement as vehicles have fewer degrees of freedom

of movement than a person and also have more sensors, such as encoders on the wheel that

can give distance estimates. It is well known, [35], that IMU dead reckoning accumulates

errors very quickly and different techniques are used in the sensor community to reign in

these errors. The localization system presented relies on the RFID data to accomplish this.

15

2.3 RFID Reader

The prototype system uses two ThingMagic Mercury M6e development boards as

readers to communicate with the RFID tags. One of these readers is shown in Figure 2.6.

These devices have a maximum output power of 30 dBm (decibels-milliwatt) but this can

be set lower if the power is too high. Each of these readers can connect to two

transmit/receive antennas but from extensive testing, using one reader to operate using

two antennas is not as reliable as using one reader for each antenna. These readers are

controlled via Raspberry Pi over a USB connection but the power is supplied using the

power supply circuit as they require a significant amount of power to operate. The

Raspberry Pi uses the Python library provided in [36] to setup the readers as well as to

extract data from them. The operation of the Python functions is discussed in section 2.8.1.

Figure 2.6: ThingMagic M6e Reader development board.

Typically, RFID readers must conform to the frequency band of the region as well as

hop its operating frequency continuously. The readers in this prototype are locked to 915

MHz to ensure that both the transmit power and received signal phase are not changed by

the frequency hopping, only by the tag reading changes in the environment. This is an

acceptable solution only inside of a mine. Outside of the mine, fixing the frequency violates

16

FCC regulations as readers must frequency hop in order to not interfere with other readers.

Per the Electronic Code of Federal Regulations Title 47, Chapter 1, Part 15 Subpart C,

15.211, we are allowed to setup radio systems underground that can operate at whatever

frequency deemed necessary, as long as the signal is contained in the mine.

A snippet of the output data from the reader is shown in Figure 2.7 for a series of tag

reads. The first column is the tag ID; the second column is the phase of the received signal

in degrees; the third column is the received signal strength (RSSi) from the tag read in

dBm; the fourth column is the reader number that received the signal (whether the right

antenna reader or left antenna reader detected the tag); and the fifth column is the time

stamp of the Raspberry Pi system time when the reading occurred in seconds. The RFID

tags used in all experiments had very simple tag IDs where only the last three digits of the

ID would change based on which tag it was. This made post-processing the RFID data

easy as only the last three digits of the tag ID were all the localization algorithm needed to

categorize the tag.

Figure 2.7: RFID data from one reader. Column 1 is the tag ID. Column 2 is the phase of
the received tag response in degrees. Column 3 is the RSSi of the received tag response in
dBm. Column 4 is the reader number. Column 5 is the Raspberry Pi’s time in seconds.

2.4 RFID Tags

The RFID tags are not located on the user but rather on the walls of the mine. These

passive RFID tags are placed in clusters throughout the mine to demarcate the start of a

17

zone as well as provide the initial position of the user as they pass into a zone. Figure 2.8

shows a picture of one of the RFID tags that was used in the mine. All of the tags that

were placed in Edgar mine were oriented vertically. This tag is a simple linearly polarized

tag that operates at 915 MHz and lists its tag ID on the face of it. The radiation pattern of

the RFID tag is roughly that of a dipole making it heavily influenced by objects in its

radial vicinity but not at the top and bottom of it due to the null in the pattern. If these

tags were placed horizontally, the localization system would not be able to communicate

with the tag if the user passed into the nulls of the tag. The vertical orientation ensures

that the user always has the possibility of communication no matter the radial they are

from the tag. The drawback of the vertical orientation is that it is influenced by the walls

of the mine which reside well in the near-field of the antenna. The offset of the tag from

the wall creates constructive or destructive interference which could be different for every

azimuth angle. The tags are attached to small medium-density fibreboard planks to

provide structural integrity and are attached to the walls of the mine using 1/4” anchors.

Figure 2.8: Linearly polarized RFID tag with thin medium-density fibreboard (MDF) back-
ing.

There are two types of RFID tags: active and passive. Active tags can be detected over

much longer distances than passive tags however they must require recharge after a year if

18

they use a battery or they require additional infrastructure in the environment to provide

power. Passive tags were chosen for the localization system as large read ranges were

unnecessary, the tags were inexpensive in large quantities, they do not have an expiration,

and they did not need any additional infrastructure to operate. Both tag types have a chip

connected to an antenna that transmit their IDs when excited. The most important metric

for passive RFID tags is the received signal strength from the reader which is a

combination of path loss, polarization, mismatch between the tag’s chip and antenna, tag

antenna gain, and efficiency. The assumption for passive tags is that as long as the tag has

enough received power from the query signal to operate, the reader will have a sensitive

enough receiver to detect the tag’s transmitted response. Tag-to-tag collision is unlikely for

clusters of passive RFID tags as they generate a random time offset on receipt of the query

signal that is applied before they transmit their ID, ensuring that they are not

communicating at the same time as another tag. Multi-path reflections in the mine could

still cause a tag to interfere with itself or other tags.

2.5 Circularly Polarized Antennas and Mounts

The RFID antenna originally used was the Alien ALR-9611-CR antenna which has

about 6 dB of gain and is circularly polarized but was too large to be carried by the user.

During the prototype development, other antennas that were tried either did not have

enough gain, were poorly designed (efficiency and mismatch losses), or were too large. The

solution was to design a custom antenna that balanced size and gain that would also work

when placed on a hardhat. These antennas were designed by Joseph Diener and had both

right-hand circularly polarized (RHCP) versions and left-hand circularly polarized versions

(LHCP). Figure 2.9(a) shows the fabricated antennas. All fabricated antennas had gains

that were above 5dB, giving it a slightly less read range than the Alien antenna but at

about half the size. This allowed for an antenna to be placed on each side of the hardhat,

giving around 11-13 feet of read range on either side of the user. Figure 2.9(b) shows the

antennas mounted to the hardhat. The final prototype uses the antennas that are

19

right-hand circularly polarized (RHCP) which means that the the electric and magnetic

fields rotate in a circular pattern as the wave propagates out of the antenna and can

receive signals that are vertical polarized, horizontally polarized, or circularly polarized.

The downside to a circularly polarized antenna is that when the RHCP signals are received

by a linearly polarized tag, either in the vertical plane or the horizontal plane, half of the

power (3dB) is lost. This is also true for the inverse; the tags emit a linearly polarized

signal that suffers a 3dB loss when received by a RHCP antenna or LHCP antenna. Future

work will be to develop circularly polarized RFID tags which will not accrue the half power

signal loss. Even with this half power loss, the read range is acceptable as the width of the

mine is around 8 to 10 feet.

20

(a) Right-hand circularly polarized RFID antenna

(b) Two RFID antennas mounted on helmet

Figure 2.9: RFID antennas and the 3D printed mount for attachment to the hardhat.

21

2.6 Power Circuit

The developed prototype uses a large 12 Volt battery pack to supply power to all

components of the system. The Raspberry Pi and RFID readers require different input

voltages in order to function. At first glance, it is tempting to just use a simple voltage

divider circuit to provide the correct voltages for each of the devices, but the voltage divider

circuit assumes that the battery voltage will always be 12V. As the battery’s power drains,

the linearly divided voltages will also be lower which will cause all of the loads to fail. This

prototype uses a universal battery eliminator circuit (UBEC) and a DC-DC converter to

maintain the correct output voltage even as the battery’s power decreases. The UBEC and

DC-DC converters also maintain the correct voltage even when the load changes. For

example, the RFID reader draws much less current when in a sleep state rather than when

it is reading tags. Though both of these circuits have different names, they both function

as voltage regulators. Figure 2.10 shows the power supply circuit in the prototype and

Figure 2.11 shows electrical schematic for the entire system. This schematic does not take

into account the RF cable connections from the RFID readers to the antennas.

22

Figure 2.10: Fabricated power supply circuit which contains the UBEC and the DC-to-DC
converter as well as the toggle switch for turning on the device.

Figure 2.11: Electrical schematic for the power supply to all devices as well as the USB
connections required to control all devices.

23

Table 2.1 lists the power consumed by each of the devices connected to the power

circuit. The DC-DC converter supplies a total of 13.4 Watts to the readers during a

measurement and with an efficiency of 90%, the DC-DC converter only draws 1.25 Amps

from the 12V battery [37]. The UBEC supplies about a total of 4.05 Watts to all of the

devices connected to it. The efficiency on the UBEC is 90% when 12V are supplied to it

resulting in a consumption of 0.375 Amps from the battery [38]. Between both of these

voltage regulators, a total of 1.625 Amps are drawn from the battery during a

measurement. The battery used in this prototype has a capacity of 7 Amp-Hours so the

entire system can take continuous measurements for about 4 hours before it needs to be

recharged.

Table 2.1: Power consumption, voltage, and current of the devices supplied by the power
circuit.

Device Power (W) Voltage (V) Current (A)
RFID Reader 1 6.7 9 0.75
RFID Reader 2 6.7 9 0.75

IMU 0.05 5 0.01
Raspberry Pi 3 5 0.6
Touchscreen 1 5 0.2

Once the correct voltages are supplied to the readers and the Raspberry Pi, the IMU

and any other peripheral equipment such as keyboards, touchscreens, or mice will have

their power supplied via the USB connection to the Raspberry Pi.

2.7 Raspberry Pi and Bash Scripting

A Raspberry Pi 3 B+ is the central component of the localization prototype. The

Raspberry Pi is a full computer with a 4-core processor, 1 GB of RAM, an HDMI port,

wireless LAN capability, SD card for data storage, and 4 USB ports. The Raspberry Pi is

connected to a touchscreen so the user can open code and manage files while inside of the

mine. A microcontroller could have been used instead of the Raspberry Pi for controlling

24

the IMU as it has I2C communication capability, however it would have been very hard to

interface with the M6e reader using a microcontroller. The RFID readers already had a

Python library written for them and were designed to be communicated with over USB

which made the Raspberry Pi the most logical choice for a central controller. A benefit of

using the Pi is that it contained an on-board integrated development environment (IDE)

which was used to develop all of the acquisition code sequentially as more devices were

added to the system without the need for another computer to run a compiler. The

flexibility of the Raspberry Pi also allows for running different codes on the fly, such as

reading one RFID reader to generate the look-up-table or just running the IMU. The WiFi

capability of the Raspberry Pi made transferring data to the post-processing algorithm on

a host machine very easy. When the Raspberry Pi is inside a wireless network and headless

(without a touchscreen, mouse, keyboard, etc.), the host machine can connect to the

Raspberry Pi via a virtual private network (VPN) connection to set it up or to extract

data from it. However, if no wireless network is present, a USB flash drive could be used

instead to transfer data.

The Raspberry Pi’s 4-core processor is instrumental for the prototype as it could run

the IMU and both readers in parallel in the background of the Raspberry Pi. The control

functions for the IMU and RFID are both written in Python 3, however the main data

acquisition code is a bash script called from the terminal of the Raspberry Pi that runs all

of the Python functions. The Python multiprocessing library was the first attempt at

running each of the readers and IMU in parallel but the RFID reader control code was not

intended to have two readers running in parallel in the same program so it continuously

failed. Running the functions for each device in the background of the Raspberry Pi was

the only solution that allowed for parallel operation. The added benefit of running each of

the devices in the background is that if one device errors out, it does not affect the other

ones.

25

2.8 Acquisition Code

The data acquisition codes for the IMU and RFID readers are developed using Python

3 as functions that are called by a bash script from the terminal of the Raspberry Pi. This

bash script runs all functions for a specified amount of time that is set by the user in the

terminal. Listing B.1 contains the bash script code. Since each function is running in the

background of Raspberry Pi, it will appear as though nothing happened after executing the

script but each of the readers and IMU will be recording data. Once the functions are

called, they will never respond back to the bash script and are each responsible for saving

their own data files. The data recording will stop when each of the devices hits the time

limit as input by the user on execution.

The common time base, to sync all of the devices, is the time since Epoch (January 1st,

1970). At the beginning of execution the bash script takes the time since Epoch and passes

it into each of the IMU and reader functions as a constant. Inside each of the functions,

they calculate the current time since Epoch and subtract the difference from the inputted

constant to get the run time. This ensures that all devices are synced to the Raspberry Pi’s

system time so that their respective data are on a common time base. Also, each device

will have a different initialization time at the start of execution so the common time base

ensures that the data time can be compared across all devices without knowing the

initialization time offset.

The bash script passes into the reader functions the serial ports the readers are

connected to on the Raspberry Pi. If these ports change, then the terminal command:

ls -l /dev/tty* will list the ports that the devices are connected to. Knowing the new ports,

the user will then need to update the Python function calls within the bash script the new

ports.

26

2.8.1 RFID Reader Control

The Mercury M6e readers are designed to work with the Mercury API software. In [36]

a library is created using Python code to interface with the readers. The RFID reader

function uses this Python library to control the two used readers and is provided in

Listing B.2. The function takes in four arguments from the bash script: the USB port

number the reader is attached to, the reader port that the antenna is connected to, the

start time of the bash script, and the duration the reader needs to record data for. The

USB port number is the last number of the port name after running ls -l /dev/tty* which

will look like /dev/ttyUSB0 for reader 0 and /dev/ttyUSB1 for reader 1. The antenna port

corresponds to the numbered port on the reader that the antenna is connected to. It is

important to note that for the two readers configuration, each reader should be connected

to the antenna on a different port than the other reader because the control function will

query each reader to report back which port the antenna is connected to and save it in the

output data. If they are on the same port, then it will appear that only one reader’s data

are being recorded. The start time is passed in to the function in order to sync the data

acquisition with the Raspberry Pi’s system time. The measurement run time corresponds

to how long the reader will be allowed to read.

The reader control function relies heavily on the Python library from [36] which

abstracts away many of the complex tasks that are typical for data acquisition scripts. The

reader control function starts by initializing a reader object using the input parameters

passed in from the bash script as well as some user defined settings that are unlikely to

change between measurements. The initialization sets the output power to 30dBm (3000

centidBm in the code), locks the frequency to 915 MHz (915000 kHz in the code), sets the

region to North America ’NA’, and sets the read plan to ’GEN2’. The function also

initializes an empty string array which will contain the data for the function. After the

reader object is initialized, the function defines a callback function which is a function that

executes every time its condition occurs, similar to an interrupt service routine on a

27

microcontroller. The callback function is called whenever a new tag is read by the reader

which is accessed from the reader’s memory via a tag object. The code within the callback

function pulls apart the received tag object, saving the tag ID, phase, RSSi, antenna

number, and time stamp as a string of characters. The string of characters for each tag

read is appended as a new line in the data array. This function does not use any loops,

instead all it does to control the reader is to tell it to start reading, wait for the amount of

time specified by the bash script run time input, and then stop reading. Over the duration

of the wait time, the callback function will trigger everytime there is a new tag read. The

start reading command is passed in the callback function defined earlier. After the reader

receives the command to stop reading, the function takes the array of data and writes them

to a text file.

2.8.2 IMU Control

Once the IMU is programmed with the Arduino library provided in [28] and according

to the guide in [34], it can now be controlled over a USB serial connection to the Raspberry

Pi. The Arduino code onboard the IMU takes in text characters as an input to either start

or stop the data recording, change settings, or to change the IMU output data. The Python

function called by the bash script is provided in Listing B.3. This function assumes that the

IMU always connects to port: /dev/ttyACM0 which is almost always the case. If the port

changes after running ls -l /dev/tty*, then it will need to be updated within the function.

The bash script passes the initial start time and the run time into the function at the start

of execution. The output of the function is a text file where every line is an IMU sample.

The IMU control function first starts by creating a serial object, setting the baud rate

and packet information. The function then initializes an empty string array, a counter and

timing information. To start the IMU data recording, the IMU function sends an ASCII

encoded space character over the serial port to the IMU which then detects it and starts

the stream of data. The IMU control function will also send another space at the end of

the program to stop data recording. This space is a toggle switch to the IMU to turn on or

28

off the data recording. Sometimes, the IMU read function on the Raspberry Pi will end

before the data stream can be toggled off (i.e. if the power is shut off mid-program) which

will cause future executions of the read function to toggle off the IMU data stream at the

start. If the IMU output file after a measurement only has 5 or less entries, this means that

the toggle switch is off and the function will keep turning the IMU data stream off at the

beginning of the program and on at the end. This can be fixed by sending another space

over the serial port using the IDLE IDE terminal window before starting the next

measurement. After starting the data stream from the IMU, the IMU control function uses

a while loop to save the data stream to the output string array incrementing a counter

every loop iteration to advance the row index of the output array. The loop ends when the

desired run time is reached. After the stop condition occurs and the function turns off the

data stream, it writes the contents of the string array to a text file.

2.9 Conclusion

The M6e readers generated numerous challenges during the entirety of the prototype

development. Originally, one reader was used to communicate using both antennas but was

highly susceptible to erroring out midway through a measurement. When the reader

throws an error, it terminates the Python control function with no error message, just a

’Restart Shell’ message that also shows when the program is first run. After numerous

measurements, the error appears to be due to the transmit power levels, the received power

levels, and the use of the two ports on the same reader. When the reader transmitted at

30dBm, it would consistently error out when 5 feet or less away from an RFID tag. If the

reader’s transmit power was dropped to 21 dBm instead of 30 dBm, the reader was much

more resilient though at the cost of a greatly reduced read range. The current hypothesis

on why these errors occur is that the temperature of the reader could have hit a threshold

during continuous measurement at maximum power, or that the received power was too

high. The implementation in [39] indicates that the device is designed to error out and

shutdown when it hits a FAULT TEMPERATURE EXCEED LIMITS 504h error or a

29

FAULT POOR RETURN LOSS 505h error which lends support to the current hypothesis.

The 504h error occurs when the device has overheated, which is consistent with the

observation that waiting an hour after the first error would be enough to get the device

operating consistently again. This was also consistent with the observation that using only

one antenna on one reader would be more resilient than two antennas connected to one

reader. Perhaps one reader with two antennas generates additional thermal strain than

only the one antenna case. The 505h error happens when too much power is coming back

into the M6e device. Two possible things could have caused this: an impedance mismatch

on the output ports of the reader which would reflect back a large portion of the 30dBm

back into the device, or being too close to the tags resulted in a received signal that was

too strong for the reader to handle. The first scenario is possible as both antennas were

connected to right angle connectors and would sometimes become damaged or loose, which

would result in a significant impedance mismatch. This was the reason for one of the failed

measurements inside of Brown building when one of the antenna’s right angle connectors

was torqued incorrectly and the center pin broke. This also makes sense that reducing the

output power would cause the device to function properly again because the reflected

signal would also be of lower power. If mismatch is not coming from the right angle

connectors then it could be some sort of proximity loading on the highly directive antennas

that would change the input impedance as well. The second reason (being too close to the

tags) is consistent with some of the Edgar mine measurements when the user walked within

1 foot of the tags in the narrow mine shaft and the reader immediately stopped working.

Both of these reasons are consistent with the observations that reducing power and or

adding distance between the tag and the reader reduces the likelihood of getting errors.

The error could also be a combination of both temperature and too much received power

but it is hard to discern which one as the reader never sends an explicit error message to

the Raspberry Pi, only a restart shell trigger in the Python terminal. Since adding more

distance between the user and the tags is not possible for narrow corridors and 30 dBm is

30

needed for the large intersections, the solution was to use two readers each transmitting 30

dBm which would operate in parallel. This greatly increased the reliability of the

prototype, however the reset error would still occur when in very close proximity to a tag

for an extended period of time at 30 dBm. Future work will be to use either a different

RFID reader or use software-defined-radios (SDR) to control and record specified RFID

data.

This chapter discussed the prototype hardware as well as the data acquisition code used

to control all of the devices. The last chapter of this thesis will discuss the hardware

improvements planned for the future update of this system.

31

CHAPTER 3

SOFTWARE

3.1 Overview

The majority of the work done for this thesis lies in the software. This chapter describes

in detail all of the major pre-processing steps and functions as well as all of the major

post-processing functions. The entire code base is listed in the appendix. This chapter will

first describe the pre-processing steps and functions which are: step-length estimation,

look-up-table generation, zone information file generation, zone connection file generation,

the map approximation of the environment, and data interleaving. The post-processing

functions are: RFID categorization, IMU zone assignment, RFID 2D position calculation,

IMU pedometer and heading calculations, 2D positioning, map matching, and plotting.

Throughout this chapter two data sets will be used interchangeably to visualize the

operation of each function; one data set taken in Brown building and the other taken in

Edgar experimental mine. See chapter 4 for a description of each of these experiments.

3.2 Pre-processing Measurements and Scripts

Before conducting a localization measurement, the user must setup the environment.

For the Edgar mine experiment, these steps took a total of 25 hours which is broken down

in Table 3.1. The steps to setup the environment are as follows:

• Install all RFID tags in the environment, recording their IDs, coordinates, and which

zone they belong to.

• Create the map of the environment by recording the center coordinates of all

intersections or changes to the path heading. These coordinates will mark the starts

and stop of the lines that will approximate a zone. These coordinates are based on a

user-defined X and Y axes and measured values are in feet, that all points are based

32

off of. For example, in the Edgar mine the long tunnel running through the center of

the mine was used as the Y axis and one of the side branches was used as the X axis.

• Estimate the user’s gait length by counting the user’s steps along a known distance.

• Measure the RSSi with a single antenna from known distances. Conduct many of

these tests in different parts of the environment to build up enough data for the

RFID reading look-up-table. It is very important to do this step with the reader set

to the same power and frequency that will be used in the localization measurements.

This will be discussed in detail in section 3.2.1.

Table 3.1: Time breakdown of the pre-characterization steps for the Edgar mine experiment.
The measurement time is also included.

Task Time (hours)
Tag Setup - 78 tags 20

RFID Characterization Measurements 3
Line Map Generation 1

Gait Length Estimation 1
Measurement Time 2

After these steps are accomplished, the user can then run the setup information

through the pre-characterization scripts. These scripts take in the user input and output

files that the post-processing script can use. Figure 3.1 shows the flow diagram of the

various pre-processing scripts, their inputs, and outputs. The scripts that are run once are

the look-up-table generator script, the tag/zone info script, the zone connection script, and

the map generator script. The look-up-table script takes in the RSSi versus distance

measurements of various tags in diverse scenarios and outputs a polynomial that the

localization code uses to convert RSSi to distance. The tag/zone info script takes in the

user’s recorded tag coordinates, IDs, and which zone they are in along with some other

information about the zone, and outputs a file that contains information for each zone that

the localization code can interpret. The zone connection script takes in user input about

33

which zones connect to each other as well as the average heading the user must enter the

zone in on, knowing the zone that the user left. This is described in section 3.2.3. The zone

connection script also contains the approximate initial coordinate the user will enter a zone

in just in case the RFID 2D localization fails. The RFID 2D localization fails when the

user traverses a zone and does not read at least three tags in a specified time window.

Finally, the map generator script takes in all of the coordinates of where the path changes

in the environment and creates an array of lines that are used in map matching. The only

pre-characterization script that needs to be run after every measurement is the RFID data

interleaver which takes in the data files generated by both RFID readers and combines

them into a single RFID data file. If only one reader is used with two antennas, then this

script is not needed.

Figure 3.1: Flow diagram of all of the pre-processing scripts and files that feed into the
post-processing script.

The main reason why the one-time execution scripts are separated from each other is to

let the user precisely change the environment setting without having to redo all of the

other settings. For instance, if the user changes the reader power or frequency then only

34

the look-up-table needs to be re-run, not the tag information, zone connections, or

environment map approximation. If tags are added to or removed from a zone then the

user just needs to re-run the zone info script. The following sections describe each of the

pre-processing steps in detail.

3.2.1 Look-Up-Table Generation

A look-up-table (LUT) is a pre-determined set of measurements that are used to

convert RSSi values to distance. For this prototype, the LUT is a third order polynomial

derived from measured data. Generating a look-up-table is, in general, an easy task,

however generating a look-up-table that will work for every scenario in a complex

environment that changes as the user progresses is difficult. For instance, in Edgar mine

the user will encounter narrow corridors with low ceilings, and large intersections with far

away tags and numerous objects in the zone to scatter off of. Sometimes the antenna will

only read tags that are off-angle of the antenna’s broadside which will have a lower RSSi

compared to when it receives them directly in its line of sight. The multipath nature of the

mine will greatly skew the received RSSi of signal making it lower after each reflection

which translates to a much further distance away from the user than it actually is. One

solution is to build up a LUT for each zone in order to most accurately predicate the

distances the user will encounter. In a very large environment with many zones this is

impractical. Another solution is to take measurements from different scenarios, combine

the data into one dataset, and then fit a curve that will work for the average of all

scenarios. This is what was done for this system.

The data for the look-up-table is composed of three measurement scenarios inside of

Edgar mine. The first scenario is a head-on measurement at a T intersection where the

antenna was moved progressively backwards at a 45 degree angle. This scenario simulates

the large open-area cavities in the mine where the user will be turning in and will most

likely receive the tags when they are in the broadside of the antenna for a brief moment.

When they are in the broadside of the measurement, the user will rarely be receiving them

35

at a perfect 90 degree angle to the wall which is why the off-angle of 45 degree is used to

generate the LUT. The tag was always kept in the direct broadside of the antenna. The

vertically-polarized tag antenna was attached to the wall where it had rock behind it,

above it, and on both sides but little rock on the bottom. Figure 3.2 shows a diagram of

the measurement for the first scenario.

The second and third scenarios closely approximate the channel that the antennas

would experience in the majority of the mine; a narrow corridor with antennas on either

side of the user. For the patch antennas used, the center of the main radiation lobe is the

direction normal to the face of the patch. In these scenarios, the user would be moving

towards the tags and would start recording tag readings in the low gain portions of the

antenna’s radiation pattern. As the the user progresses the tag readings would come

directly in the center of the main radiation lobe of the antenna, which has the highest gain,

resulting in a higher RSSi. As the user traveled out of the zone, the tag readings would be

on the outside of the center of main radiation lobe and would again have lower gain. The

second scenario exemplifies when the tag is on the right side of the user and the user is

closer to the opposite wall. The third scenario is the same as the second scenario except

that the tag is on the left side of the user and the user is a foot closer to the tag. Scenario

two is illustrated in Figure 3.3 and scenario three is illustrated in Figure 3.4. For each of

these scenarios, the center of the antenna’s main lobe was always facing directly at the wall

and the antenna was held at head-level by hand. The antenna was then moved down the

mine shaft from 0 feet to 3 feet in 1 foot increments. The tag signal was lost after 3 feet for

scenario one but scenario 2 was able to still detect the tag signal at 3.5 feet so this value

was also included. At the initial position (0 feet) the tag would be perpendicular to the

antenna. The distance that is input into the script, for each RSSi value, is the line of sight

distance from the center of the tag to the center of the antenna.

36

Figure 3.2: First measurement scenario to create data for the look-up-table. The diagram
on the left shows the setup of the measurement. The right picture shows the tag attached
to the wall for this measurement. The red triangle represent the RFID tag and the green
rectangle represents the antenna.

Figure 3.3: Second measurement scenario to create data for the look-up-table. The diagram
on the left shows the setup of the measurement.The distance used for the look-up-table is the
length from the center of the tag to the center of the antenna. The red triangle represents
the RFID tag and the green rectangle represents the antenna. The right picture shows the
location of the tag for this measurement. The red oval is the location of the tag under test.

37

Figure 3.4: Third measurement scenario to create data for the look-up-table. The diagram
on the left shows the setup of the measurement. The distance used for the look-up-table is
the length from the center of the tag to the center of the antenna. The red triangle represents
the RFID tag and the green rectangle represents the antenna. The right picture shows the
location of the tag for this measurement. The red oval is the location of the tag under test.

The code used to generate the LUT is provided in Listing C.4. This code should be

used as a guideline for the user as different scenarios will require different input values. In

its current state, it does not take in any arbitrary data from a file like the other

pre-processing scripts do. The input to this script is the distance and RSSi values for every

measurement scenario. The codes takes these measurements values and creates a third

order polynomial to the scattered data as well as generate the correct file that is needed for

the input to the post-processing code. The output file contains the coefficients for the

polynomial and their curve fit statistics, stored in a cfit object. The fit function and the

resulting cfit object require the MATLAB curve fitting toolbox. Currently, the localization

code assumes the LUT is a third order polynomial so any change from this polynomial by

future researchers will require changes to the code in Listing C.4 and Listing C.11. Third

order is the optimal order of polynomial to approximate the data as it has sharp roll-offs of

distance at low RSSi values (< -70 dBm) and high RSSi values (> -55 dBm) but the

distance values flatten out in the RSSi range between the high and low RSSi values. The

38

third order polynomial is described by equation (3.1).

Distance = A ∗RSSi3 + B ∗RSSi2 + C ∗RSSi + D (3.1)

where, A = −0.000978, B = −0.168280, C = −9.824537, D = −191.201163, are the

coefficients obtained from Edgar mine pre-characterization data. RSSi is in

decibel-milliwatts (dBm), and Distance is the distance from the user to a tag with units of

feet.

Figure 3.5: Look-up-table generated from the measured data in Edgar mine.

The look-up-table generated inside edgar mine is shown in Figure 3.5. The black

diamonds correspond to the measurements taken from two different types of experiments

inside of Edgar mine with the RHCP 1 antenna held at head level by hand. The MATLAB

function poly3 created the orange line that fit the data. The corresponding 3rd order

39

polynomial is listed in red at the top of the plot. Typically, the distance determines the

RSSi but the equation needed for the look-up-table is the inverse of this, hence why the

RSSi is on the independent axis.

3.2.2 Zone Information

During the tag installation process, the user will record the tag ID, tag coordinates, and

which zone the tag belongs to. The user will then need to create a comma separated values

(CSV) file that puts each tag entry in the format of: Zone, Tag ID, X Coord., Y Coord.

An example of this file is shown in Figure 3.6. The reason for using a CSV file is because

they are human-readable and very easy to modify.

Once this file is created the user will run the code in Listing C.5 and can add additional

information to the file such as what type of the zone each of them are as well as legacy

information on the forward zone transition headings and the reverse zone transition

headings. The output of this script is another CSV file which is shown in Figure 3.7.

Besides the first row which contains the column header, each row corresponds to a zone.

Each of these rows contains all of the tag information for the zone as well as the zone type

and transition headings. In the Brown building measurements, the forward and reverse

zone transition headings were used for the ’s’ type zone (’s’ meaning straight section) to

correct the user’s headings. The ’u’ character at the end of the zone 2 entry means that

zone 2 is an ’undefined’ type zone and no additional logic is applied to this zone in the

localization code. This is because zone 2 is an intersection. If the user decides to apply

different logic to each of the zones separately in the localization code, then other characters

can also be used. Two simple headings are not enough to characterize all headings into and

out of an intersection with more than 2 spokes, hence the zone connection script was

created. These headings were kept around for consistency just in case the user decides to

use the code to look at earlier Brown building data. This is why there are two ’NaN’

entries before the ’u’ character. The measurements performed in Edgar use the zone

connection file to provide the initial headings into any type of zone.

40

Figure 3.6: Contents of the CSV file that is generated manually by the user. The first
column is the zone number, the second column is the last three number of the tag ID, the
third column is the X coordinate of the tag in feet, and the fourth column is the Y coordinate
in feet. This file was used for the Brown building measurements.

Figure 3.7: Contents of the CSV file that are output by the zone information generator
script. The top row is clipped off due to the length going out of bounds of the screen. Each
row corresponds to a different zone. This file was used for the Brown building measurements
and is the output of the zone information script where Figure 3.6 was the input of. The ’u’
at the end of the row starting with 2, says that the zone is of type ’undefined’ which will
have different logic applied to it in the localization script than the rows with the ’s’ at the
end.

41

3.2.3 Zone Connection Generator

The heading calculation in the post-processing script requires an initial heading. Since

each of the zones are isolated from each other, the end heading from the previous zone is

not used as the initial zone heading for the current zone. This is done to eliminate the

heading drift error that accumulates very quickly from the gyroscope integration. Instead,

Listing C.6 can be used to specify the initial heading into a zone when the previous zone is

known. This is implemented in the code using a 2D matrix of structs where zones that are

connected together have an entry. If the zones are not connected together they do not have

a valid entry and can be used by the localization code to see if the user skipped a zone. See

Figure 3.8. Each valid entry contains the heading from zone i to zone j and the initial

position in that zone just in case the initial position estimate from the 2D RFID fails. If

zone i is connected to j then there will be a valid entry in the matrix for (i, j) and (j, i).

Looking again at Figure 3.8, we see that the straight section (only one way in and one way

out) zones: 1,2,4,5,6,7,9,10, and 11, only have two entries. Zone 1 is an exception as it is in

the user’s starting zone and contains a (1, 1) entry. If the user starts in a different zone, the

initial condition must be moved to (i, i) that it corresponds to. The intersection zones: 3

and 8, have three entries because they are each connected to three other zones. This zone

connection map allows for very complex environments with large numbers of zones to be

connected together simply.

42

Figure 3.8: Zone connection diagram of Edgar mine. The figure on the left is a visual
representation of the struct array where the green boxes signify a valid connection and
everywhere else is not valid. On this visual representation, the left and top axis correspond
to the zone number. The figure on the right shows the connections between the different
zones and what angles the zones connect at. Positive angles are defined as counter-clockwise
rotation about the x-axis which is at 0 degrees. The arrows signify the initial heading for the
heading calculations in the next zone. The tail of the arrow is the zone the user is leaving
and the tip of the arrow is the zone that the user is heading to.

43

The zone connection script requires the user to manually input these headings and

initial positions. To estimate the initial position, take the maximum read range a tag can

be detected at and subtract (or add) the coordinates of the tag, in the current zone but the

one closest to the previous zone, by this read range. The coordinate is then moved to the

center of the path. If the zone is at an angle from the previous zone, the maximum read

range will need to be broken apart into X and Y contributions before being subtracted (or

added) to the tag closest to the previous zone. The headings are much easier to determine

as they are simply the heading the user will be at when entering the zone which is not

necessarily the same heading the user would have when leaving the previous zone. This

could occur on a corner turn with no zones in between.

3.2.4 Map Approximation

Every indoor environment with narrow corridors can be approximated by a grid of lines

where each line runs right in the middle of the corridor, similar to a road map. Each line

has a starting coordinate P1(x1, y1) and an ending coordinate P2(x2, y2). Whether the user

is looking at a full map of the environment or in the environment with a tape measure, the

user just needs to record the center coordinate of where each corridor changes directions.

By using the map approximation script, Listing C.7, the user can easily build up the grid

of lines using these corridor change coordinates. The script builds up a size Nx4 array

where N corresponds to the total number of lines and the size 4 dimension contains the

coordinates of P1 and P2 put together: (x1, y1, x2, y2) . This grid of lines is used in the

final step of the localization algorithm to map match the user’s estimated 2D position,

eliminating the non-physical positions that are outside the walls of the mine.

Figure 3.9 shows the actual map of Edgar mine with the approximated line map.

Notice that only one line is necessary to run the entire length of the Miami tunnel (part of

Edgar mine) since this tunnel stays constant in heading. The tunnels: A-left, B-left, and

B-right only have one line to approximate them in this map because the user never

advanced further during the testing of the localization system prototype. If future testing

44

progresses farther down A-left and B-left, more lines will be needed. The path from A-left

to B-left through the shop requires three lines to approximate the path. In general,

corridors with turns will need to be approximated by a series of lines placed end to end.

Figure 3.9: Approximation map of Edgar mine with lines. Left picture shows a small section
of the full Edgar mine map with the line approximation of it in red. The right picture is
the line approximation displayed in MATLAB. x’ and y’ are the coordinate system that was
used for recording the tag coordinates and it is different than the coordinate system that the
Edgar mine map uses. The origin dot in the left figure is the origin point for the prime axis
not the Edgar map. The origin points corresponds to the halfway point in the full Miami
tunnel.

3.2.5 RFID Data Interleaver

The current prototype of the localization system uses two different M6e readers, one

connected to the left antenna and the other connected to the right antenna. As mentioned

in the hardware chapter, the reason for this was because one reader would consistently

throw errors when recording data from two antennas. Due to the bash script running the

two readers simultaneously, they now generate separate data files when they are finished.

The code in Listing C.8 combines these data files together into one file to appears as if one

reader read both antennas. This format is necessary for the post-processing script to

45

interpret it correctly. Future updates of the prototype with more advanced readers can

reduce the number of readers to only one with two antennas working simultaneously.

3.3 Post-processing

Once the pre-processing steps are finished the user can now take a measurement using

the acquisition code described above. Using the data from the measurement, the

post-processing code will determine the user’s path through the mine with time stamps

that can be synced with other sensors, such as a dust monitor, to create a map of a

particular hazard. The main function of the post-processing code is listed in Listing C.17

and it calls all of the other functions described in this section. The post-processing code is

called the zone categorization algorithm (ZCA) as it uses the zone structure to split apart

the data into bins. These bins correspond to each zone the user transitions into. A zone

transition is a change in zone, not just that zone. For instance, the user can go from zone

A to zone B to zone C and then back to zone B which would create four bins of zone

transitions. For this reason, zones cannot be placed too close to each other or the system

will from both zones simultaneously and indicate many zone transitions each with only a

couple of IMU and RFID values. Only the processed RFID and IMU data will localize the

user’s position in that bin ensuring that each zone is calculated independently of other

zones. Throughout the rest of this thesis, post-processing and ZCA will be used

interchangeably. The benefits of the ZCA are:

• Modular code. User’s can swap out different functions for an improved version of

either RFID or IMU processing.

• Robust algorithm. At a minimum only one tag needs to be read in a zone which

leverages the most resilient and binary feature of RFID: tag identification. At least

three tags need to be read within a user specified time window to provide initial

position.

• Counters the IMU’s tendency to rapidly accumulate error by resetting it every zone.

46

• Errors do not influence the localization estimates in other zones.

• IMU data categorization allows for minimal tag placement. Does not require tags

every a couple of feet on all walls.

• Ability to parallelize the processing for large data sets, due to the zone’s

independence.

• Once an environment has been pre-characterized, it is very quick for the user to take

measurements and post-process the results. Code minimizes the number of user

inputs needed to run completely different routes. Already scaled for many users.

The flow diagram of the ZCA is shown in Figure 3.10. Once the zone transitions have

been identified, the data are split into a MATLAB struct that has a length that is the same

as the number of zone transitions. Once the data are assigned to the correct zone

transition index, the ZCA loops across the struct of zone transitions. For each index in the

struct, all information about the tags is pinned to the struct as well as all of the

categorized data, for that zone. In each index in the loop, the ZCA will calculate the 2D

position using just the RFID values using the first coordinate at the user’s inital position,

determine at what indices in the IMU data the user stepped, determine the user’s heading

using the gyroscope component of the IMU data, calculate the user’s 2D position through

the entire zone, and then finally map matching these position to the mine map. Once the

ZCA applies these processing steps to all of the zone transitions, it will then plot the

results. The inputs into this algorithm are in Table 3.2. The outputs of the algorithm are

the plotted 2D coordinates of the user in the mine.

47

Figure 3.10: Flow diagram of the post-processing algorithm.

Table 3.2: User inputs to the algorithm and their default values

Variable Example value Description
location < C : ...DATA > Filepath to Data

filename imu ′imu data.txt′ IMU data file name
filename rfid ′rfid data.txt′ RFID data file name
filename zone ′zone info.csv′ CSV file with tag/zone info
filename lut ′edgar lut.mat′ .MAT file containing LUT coefficients

filename zone connect ′zone relation.mat′ .MAT file with connection array
filename line map ′zone map.mat′ .MAT file containing the line map

user gait 2.3 User gait distance per step (ft/step)
msmnt ant num 2 Number of measurement antennas

dt 0.01 Sample rate of IMU (seconds)
gyro axis ’y’ Gyro axis that corresponds to heading
gyro gain 1 Gyroscope gain (scale factor)
flip 180 ’y’ Whether CW or CCW turns are positive
tws 0.5 Window width in RFID 2D (sec.)
wo 0.25 Window overlap in RFID 2D (sec.)
gni 10 Gauss-Newton Iterations

map match yn ’y’ Map Match? Yes,No
result rotat 25.2826 Rotate 2D results (degrees)

48

3.3.1 RFID Categorization

After loading all of the pre-processing files, IMU data, and RFID data, the first step of

the post-processing algorithm is to determine when the user was in each zone. Using the

RFID data and the zone information file, the post-processing script determines which zone

each tag reading belongs to just by using the tag ID. Listing C.9 contains the function that

accomplishes this. A minimum of only one tag read throughout the zone is all that is

needed to determine which zone the user is in. This greatly enhances the robustness of the

algorithm as a hazardous environment, like a mine, could provide a chaotic scenario where

it is extremely difficult to read tags. A one tag read minimum relieves the pressure to read

many tags in order for the rest of the localization code to function.

Figure 3.11: RFID tag measurements categorized into zones. The length of the lines corre-
sponds to the length of time that the reader was reading at least one tag in the zone that
it is categorized in. The gap between the lines corresponds to the absence of RFID readings
in between zones. Data shown are from the Edgar mine measurement.

Listing C.9 outputs an array containing the assigned zone number for each RFID tag

read. Figure 3.11 visualizes the output of the function contained in Listing C.9. This plot

shows that the zones were optimally spaced so that the reader was not reading tags from

more than two zones simultaneously nor are the time gaps between zones greater than 20

seconds. The tighter the zones are, the less error the IMU will accrue in between the zones.

Since the localization code now knows when the tags were read and which zones they were

49

apart of, it can now use this information to divide up the IMU data and assign them to the

zones they belong to.

3.3.2 IMU Zone Assignment

Using the time stamps of the RFID data and the zones that they are identified in, the

localization code divides up the IMU data into which zones they belong to. As soon as a

single tag is read from a zone, all IMU data are assigned to that zone until a single tag is

read from a different zone. Figure 3.12 illustrates how the RFID data are used to split up

the IMU data. This figure shows the user’s dead reckoned path which is obtained from the

categorized IMU data. The dead reckoning calculations have not occurred at this point but

the figure presents the IMU data this way for easy interpretation. Also, the initial position

from the RFID 2D localization has not happened at this point either but it is included in

this figure as an illustration of how all of the localization functions fit together. The ’initial

position’ is the first instance where at least three unique tags belonging to that zone are

read. As soon as the user reads a single tag from the zone, the IMU data after this point is

considered to be part of that zone until a single tag is read from a different zone.

Categorizing the IMU data into zones is the primary way the localization algorithm bounds

the IMU’s dead reckoning drift. Each zone is independent of each other, therefore each

zone’s localization errors are purely contained in itself and do not influence the user’s

position in other zones.

50

Figure 3.12: Illustration of the IMU zone categorizations. Starting from the left, the user
progresses from zone 1 to zone 2 and finally to zone 3. The large tinted circles are the
approximate areas where the tags can be read. Zone transitions are indicated by the dotted
black lines. The colored lines indicate which zone the dead reckoned position belong to. The
blue line changes to green as soon as a single tag in zone 2 (green) is read and the green line
turns into red as soon as a single tag in zone 3 (red) is read.

The IMU assignment function is the heart of the localization algorithm. Listing C.10

contains the code necessary to assign the IMU data. First, the code loops through all of

the RFID tag readings and their corresponding zone assignment, determining when the

user leaves one zone and enters another. This is called a zone transition. The function then

saves the times that these zone transitions occurred. Both the RFID data and the IMU

data use the Raspberry Pi as the common time reference so all time stamps in both data

sets are already synced. The assignment function takes the times that the user entered a

zone (transitioned from a previous one) as well as time the user left the zone, and finds the

indices of the IMU that these transition times fall at. The IMU indices in between these

two points belong to that zone. The function repeats this process for the remainder of the

zone transitions. The output of this function is the arrays of indices in the IMU data for

each zone. The main localization script then uses these indices to assign the IMU data to

the data struct that corresponds to that zone transition. From here, the IMU data can now

be used in the IMU pedometer and IMU heading calculation functions.

51

3.3.3 RFID 2D Position

The most critical component for accurate dead reckoning is the initial position of the

user. A poor initial position will offset the entire dead reckoned path propagating this error

to ever coordinate. This is why the error from the initial position is the second most

significant error; only second to the user’s step length average. In algorithms that are not

partitioned into zones, this initial position is determined once at the beginning making it

easily justifiable to make it a hardcoded user input but for this algorithm it is calculated in

every zone transition which requires a programmatic way of determining it. In other words,

the user’s position is reset in every zone and no positioning is used from the previous zone.

This algorithm uses the RFID data to provide this initial position when the system reads

at least three unique tag reads in a user defined time window. In the RFID tag clusters in

the zones, the reader will read tags with a 20ms to 500ms time gap between readings.

Figure 3.12 illustrates where the initial positions typically land in a zone. A unique tag

read is the highest RSSi read of a unique tag ID by any of the antennas in that time

window. Sometimes the system will read the same tag with both antennas, each reading a

completely different RSSi due to signal reflection. In case the system does not read three

tags, the zone connection matrix provides a rough initial position for each zone that the

user hardcodes, but the use of this value is avoided at all costs.

52

Figure 3.13: Distance from the user to each of the tags versus time. The look-up-table
converted the RSSi to the distances shown in the figure. ’L’ corresponds to the left antenna
and the ’R’ corresponds to the right antenna. The tag number corresponds to the last three
digits of the tag ID.This figure also illustrates the swept window across the data. The window
has a fixed width and is stepped through the code, in time, overlapping the next window by
a time set by the user.

53

The RFID localization function is provided in Listing C.11 which takes the RFID data

as an input and outputting the initial coordinate. References [40] and [41] were essential in

creating this function. The RFID localization function first uses the look-up-table, such as

the LUT shown in Figure 3.5, to convert every RSSi value to distance. The function moves

a time window across all of the distance values, determining if at least three unique tag

reads happened within it. Figure 3.13 shows the converted distance values across time with

the window parameters, width and overlap, visualized. As mentioned above, a unique tag

read corresponds to only one tag ID even if both antennas read the same tag. A high RSSi

value is the shortest path from user to tag so if the other antenna reads that same tag with

a lower RSSi value, it is most likely reading a reflection of the tag’s signal. The lower RSSi

value on the reflected signal will throw off the positioning as the LUT will convert it to an

artificially long distance. The antenna that reads the tag ID with the shortest distance is

considered the unique tag reading and the other antenna’s RSSi value is ignored, within a

window. If the same antenna reads the same tag ID multiple times within a window, the

shortest distance value is used. If more than three unique tag reads occur within a window,

they are included in the position estimate. Each window is independent of one another, i.e.

the left antennas reading of tag ID 1234 will be considered the unique reading for one

window but the right antennas reading could be considered the unique reading for the

window immediately after. The windows overlap by a user specified time value to eliminate

the edge cases where the three unique tag reads are split between the two windows.

Without window overlap, neither window in succession would detect the three unique

reads. The center position of the window is the time stamp of the estimated coordinate.

For each window that successfully reads at least three unique tags, the function passes

these distance values and tag coordinates to a Gauss-Newton iterative method to determine

the user’s coordinate. The Gauss-Newton method is an iterative process which minimizes

the error on a desired goal. The goal for this scenario is to minimize the error between two

distance values. The first distance value is the distance from the estimated user’s position

54

to the tags and the second is the actual measured distance from the user’s position to the

tags. This method was chosen over triangulation or trilateration as the measured distance

readings are prone to high error. For instance, if the moving window finds four unique tags

within the specified time but only three of them have realistic distance readings, the

Gauss-Newton algorithm will still be able to get close to a position estimate that satisfies

the three realistic tag readings though the estimate will be influenced by the unrealistic

distance reading. The function to execute this method is provided in Listing C.11 where

the code was adapted from [40]. References [42] and [43] were instrumental in

understanding the Gauss-Wewton algorithm when applied to 2D localization.

The tag coordinates array, T, has size Nx2 where N corresponds to the number of

unique tag reads and the second dimension is x, y.

T =

t1,x t1,y
t2,x t2,y
...

...
tN,x tN,y

(3.2)

The measured distance data from the user to each of the tags is contained in matrix M,

which is of size Nx1; one distance measurement for each unique tag.

M =

m1

m2

...
mN

(3.3)

Using T, the function determines the initial position guess bounds, zsize,x and zsize,y, by

finding the minimum and maximum x and y coordinates across all tags. Equations (3.4) -

(3.7) use MATLAB notation to select all values in the appropriate column of T.

zmin,x = min(T(:, 1)) (3.4)

zmin,y = min(T(:, 2)) (3.5)

zmax,x = max(T(:, 1)) (3.6)

zmax,y = max(T(:, 2)) (3.7)

zsize,x = zmax,x − zmin,x (3.8)

zsize,y = zmax,y − zmin,y (3.9)

55

After bounding the region for the initial guess, the function calculates the initial guess

using 3.10.

g0 =
[

(zsize,x ∗R) + zmin,x (zsize,y ∗R) + zmin,y

]

(3.10)

In equation (3.10), R is a random number between 0 and 1, seeded with the system

time. The 0 subscript on g0 indicates that this is the initial guess of g. After the initial

guess, the Gauss-Newton algorithm iterates on this coordinate to converge to the estimated

coordinate that minimizes the error between the estimate distance to the tags and the

measured distance to the tags [42]. Each iteration of the estimated position is designated

by gi where the iteration number is designated by the subscript i. There is no convergence

criteria such as a minimum error because this could easily lead to an infinite loop if the

error plateaus at a value that is greater than the convergence error. The users sets the

number of iterations at the beginning of the ZCA.

The matrix G in equation (3.11) is the current iteration’s guess repeated across every

row to get to length N x 2. The array ∆x in equation (3.12) is the differences between the

guess’s x coordinate and each tag’s x coordinate, of size N x 1. The array ∆y in equation

(3.13) is the differences between the guess’s x coordinate and each tag’s y coordinate, of

size N x 1. The array ∆r in equation (3.14) is the distances from the guess coordinate to

each tag coordinate.

Gi =

gi,x gi,y
gi,x gi,y
...

...
gi,x gi,y

(3.11)

∆x =

(gi,x − t1,x)
(gi,x − t2,x)

...
(gi,x − tN,x)

(3.12)

56

∆y =

(gi,y − t1,y)
(gi,y − t2,y)

...
(gi,y − tN,y)

(3.13)

∆r =

√

dx2
1 + dy21

√

dx2
2 + dy22
...

√

dx2
N + dy2N

(3.14)

The arrays ∆x

∆r
and ∆y

∆r
in equations (3.15) and (3.16) are each of dimension Nx1 and

are the differences, for each axis, from the guess to the tag divided by the distances from

the guess to the tag:

∆x

∆r
=

dx1/dr1
dx2/dr2

...
dxN/drN

(3.15)

∆y

∆r
=

dx1/dr1
dx2/dr2

...
dxN/drN

(3.16)

The matrix D is composed of ∆x

∆r
in the first column and ∆y

∆r
in the second, making D a

size Nx2 matrix. D is the Jacobian matrix as described in [43].

D =
[

∆x

∆r

∆y

∆r

]

(3.17)

Using D, M, and ∆r, the function can now calculate the delta that is used to modify

the next guess iteration.

∆ = (DTD)−1DT (∆r−M) (3.18)

The term (DTD)−1DT is the pseudo-inverse of D and (∆r−M) is the difference

between the guess’s distance to each tag and the measured distance to each tag. The next

guess is calculated by subtracting the delta from the current guess iteration.

gi+1 = gi − ∆′ (3.19)

57

The delta has a prime notation to signify a matrix transpose operation as it is output

from equation (3.18) as a 2x1 array but to subtract it from gi directly, it needs to be 1x2.

Equations (3.11) - (3.19) are calculated for every Gauss-Newton iteration and the

Gauss-Newton estimation method is repeated for every valid window.

Figure 3.14: Estimated position of the user through a zone. User traveled from the bottom
left of the figure to the top right. The red diamonds correspond to the tag locations. The
black lines are the walls of the mine. The dotted red line is the actual path of the user
through the zone. The blue dots are the RFID localized positions. The orange sun marker
at the bottom of the figure is the initial position which is fed into the 2D positioning function.
The shown data are from Edgar mine test in zone 6.

By performing the window search and Gauss-Newton estimation on the distance values

shown in Figure 3.13, the resulting 2D positions are shown in Figure 3.14. This figure

shows that over the RFID data for this chosen zone, the function only found seven valid

windows where at least three unique tags were read. The initial position is indicated by the

58

orange sun marker at the bottom left of the figure and it is the position that is output from

this function. The function outputs the rest of the positions, signified by the blue circle

markers, but they go unused. As seen in Figure 3.14, the estimated positions using just the

RFID data show a reasonable estimate in the beginning of the zone but oscillate towards

the end of the zone. This figure shows a very plausible initial position in the zone but other

zones have an initial position that is unrealistic, which creates an offset for the rest of the

dead reckoning. Future work will be to fuse the IMU 2D positions with all of the RFID 2D

positions but due to the variation in these positions, there was no reason to incorporate

this sensor fusion into the system in its current state. RFID hardware improvements on the

prototype may improve the 2D estimate significantly.

3.3.4 IMU Pedometer

The IMU’s accelerometer records the user’s X axis, Y axis, and Z axis acceleration,

measured in g’s. These accelerometers are very good at recording the user’s sudden

impulses of movement, such as each jolt when the the user steps. This developed prototype

device and software uses the IMU’s accelerometers as a pedometer which counts the user’s

steps and the times that they occurred at. Once the number of steps are known, the

algorithm can then estimate the traveled distance of the user by multiplying the step count

by the user’s average gait length. The benefit to this method is that there is no drift since

there is no integration of the data, just detection of the peaks straight from the acceleration

data. The functions used to detect the steps are shown in Listing C.12 and in Listing C.13.

Listing C.12 takes the raw acceleration data and the sample period length and outputs the

indices of the acceleration data that the steps occurred at. This function first calculates the

magnitude of the acceleration data using equation (3.20) where Ax,Ay, and Az corresponds

to the acceleration data along the X axis, Y axis, and Z axis, respectively.

Amag =
√

(Ax
2 + Ay

2 + Az
2) (3.20)

59

Next, the function performs the fast fourier transform (FFT) using MATLAB’s fft

command on Amag to convert it to the frequency domain. The function then filters the

data by zeroing out the values that are below −2.5Hz and above 2.5Hz. After the data

have been filtered in the frequency domain, the function performs the inverse fast fourier

transform using MATLAB’s ifft command which makes a clean time domain waveform

with a period of roughly 1second corresponding to a human’s natural stepping rate. If the

user is stationary, then the waveform will have a flat value at 0 and will not contribute to

the step count, as intended. The peakfinder function, described in Listing C.13 and taken

from [44], takes in this filtered time signal and a user specified threshold (0.8 for this

prototype) and finds the indices where the peaks occur. These indices are then output from

the function and are used later in the localization code to advance the user’s travel

distance. Figure 3.15 shows the filtered time domain waveform and the detected peaks.

Currently, the code only uses a single constant to multiply the step count with which leads

to an under approximation or an over approximation of the user’s traveled distance. This

error is mitigated by shortening the distance between zones so the IMU has less distance to

dead reckon over.

60

Figure 3.15: Magnitude of the time domain acceleration waveform after being filtered (blue).
The red circles correspond to the peaks of the waveform that the peakfinder function [44]
detected. Notice how for the first second the user is approximately stationary and no peak
is detected. Data were taken from a portion of the IMU measurements during the Edgar
mine experiment.

61

3.3.5 IMU Heading

The IMU’s gyroscope records the X axis, Y axis, and Z axis angular velocity about the

center of the IMU, measured in degrees per second. Current heading algorithms will fuse

this data with the accelerometer and magnetometer data and apply techniques such as

Kalman filtering to give a user’s heading estimate using the world as the reference frame.

For the purposes of this algorithm, only the relative heading difference from an initial

orientation is all that is needed to dead reckon the user. This heading is calculated by

integrating the gyroscope data along the axis that is normal to the path, assuming that the

IMU is fixed in a known orientation and does not pitch or roll. The prototype described

above has the IMU locked to the vest so only the yaw axis sees the user’s heading change.

Due to the swaying and bending of the user through the mine, other axes will have a

portion of the heading change resulting in heading error. If future prototypes change the

orientation of the IMU, a rotation matrix may be needed to realign the data.

Listing C.14 contains the function used in the localization code to calculate the user’s

heading. The inputs to this function is: the data struct for the zone which contains only

gyroscope data and time data that were assigned to this zone; a variables which specifies

the gyroscope axis to calculate across; a gain constant that multiplies the gyroscope data

values; and a coefficient which can flip the axis of rotation. For this prototype, the Y axis

corresponds to the user’s yaw axis which is why it is the only one calculated over to

determine the user’s heading. Since the user can redefine the axis of rotation for different

measurement scenarios, this function uses the axis flip coefficient to multiply all of the

gyroscope data by either a 1 or -1 to change the headings to be positive or negative. The

input data struct also contains the initial heading which is determined prior to this

function. The heading is calculated using MATLAB’s cumtrapz function which is a

cumulative trapezoidal integration method. The system time is used in this function as

there is slightly nonuniform spacing between measurement values.

62

Figure 3.16: Raw data from the gyroscope for each axis (top) and the resulting heading after
cumulative trapezoidal integration of the data (bottom). The X axis (blue), Y axis (orange),
Z axis (yellow) corresponds to pitch, yaw, and roll, respectively. The user’s yaw axis is used
to calculate the heading for the IMU dead reckoning. Data shown are from the Edgar mine
measurements.

63

The raw gyroscope data are show in the top plot of Figure 3.16 for an entire

measurement but in actuality, the entire measurement set will be split into each of the

zones. In this figure, the raw X axis data (blue line) have a strong oscillatory nature about

the zero axis but the positive components and negative components are balanced such that

the integrated result is close to constant across the whole measurement. It has the large

shift in the beginning because the user rocked forward to begin walking. The X axis

corresponds to the user’s pitch axis which is oscillatory in nature as the user rocks forward

and backward as they walk. The raw Y axis data (yellow line) have a similar oscillation as

the X axis but it has much larger spikes in the positive axis to turn left and larger spikes in

the negative axis to turn right. As mentioned previously, the Y axis corresponds to the

user’s yaw axis making it the major determinant of the user’s heading. The large spike at

around 90 seconds corresponds to when the user performed a 180 rotation which is seen in

the large negative jump in the bottom plot of Figure 3.16. The raw Z axis data (yellow

line) have fairly small in magnitude compared to the X and Y axes making it susceptible to

measurement noise which is why it has the worst drift over the measurement when it is

integrated. Since the user had a slight roll when conducting the 180 degree turn the z axis

contains a small percentage of the user’s heading information which is why it also has a

significant peak at around 90 seconds. A simple rotation matrix cannot be applied to all of

the data to correct this one point because it would cause inaccuracies in all points before

and after the 180 turn.

3.3.6 Combined 2D positioning

With the user’s step indices, heading, and the RFID initial position along with the time

at which it was calculated, the post-processing script can now calculate the user’s 2D

position. The function used is provided in Listing C.15. The initial position is not the first

coordinate the user was at when they entered the zone. Instead, it was the first coordinate

where the system read at least three RFID tags within a specified time window. This

means that within the same zone, there is IMU data recorded before the initial position

64

and data recorded after. None of this IMU data came from a different zone as at least one

tag from the current zone was already read to assign the data. Just not enough tag reads

to determine the initial position. If three tag reads are never read in a specified time

window throughout the entirety of the zone, the function uses the approximate initial

position that is stored in the zone connection file. The 2D positioning function uses the

time stamp of the initial position to separate the IMU data into two groups, the pre-initial

position data and the post-initial position data. See Figure 3.17 for an illustration of where

the initial position falls in relation to the IMU data before and after. The user only

advances in the environment using steps so the 2D coordinates are only updated every

step. The function loops across the length of the IMU data but it only updates the 2D

coordinate if that index in the IMU data is where a step occurred. The step indices were

obtained earlier in the post-processing code. Starting, with the post-initial position IMU

data, equations (3.21) and (3.22) calculate the user’s coordinate. In these equations, x and

y correspond to the user’s coordinates, i is the user’s current step index, i-1 is the user’s

previous step index, θi−1 is the user’s heading at the previous step index, and Gait is the

user’s average step length in feet.

xi = xi−1 + Gait ∗ cos(θi−1) (3.21)

yi = yi−1 + Gait ∗ sin(θi−1) (3.22)

The initial x and y coordinates are the initial position obtained from the RFID and the

initial θ is the user’s heading at that point in time. To calculate the user’s coordinates

before the initial position, move the Gait ∗ cos(θi−1) term to the left side of equation (3.21)

and move Gait ∗ sin(θi−1) to the left side of equation (3.22). The two main assumptions

made by these equations is that the user is walking in the same direction as their indicated

heading and that they are stepping at roughly the same gait length for each step. The first

assumption is reasonable as the user’s trunk will most likely not be moving in a direction

that is separate from their step direction unless there is an obstacle in the mine that results

65

in the miner side-stepping to get around it. Since the IMU is on the chest and not on the

hardhat, the user can freely look around without the 2D estimate being thrown off. The

assumption that the the user is always stepping at their average step length is obviously

flawed. There are numerous reasons why the user would walk at a shorter gait distance or

a longer gait distance for extended periods of time. This assumption is one of the main

sources of error currently in this algorithm. This assumption will need to be improved in

the future, possibly by using machine learning to detect user’s gait patterns and determine

what the most likely gait distance is, such as the method described in [45]. Another

solution is to fuze the other RFID 2D position values with the dead reckoned position

estimate. In the current prototype, the RFID 2D positions fluctuated too much through a

zone to allow for this position fusion. Listing C.15 contains a placeholder where future

development can interject their fusion algorithm. After this function calculates the user’s

2D position estimate, they are input into the map matching function.

Figure 3.17: Simple diagram showing the initial position for the 2D function. The black line
is the dead reckoned user position, from the IMU data, before the initial position. The red
line is the dead reckoned user position after the initial position. All data still belongs to one
zone.

3.3.7 Geometric Point-to-Curve Map Matching

The narrow corridors of underground mines and indoor spaces are very useful to

localization algorithms due to their constraints of a user’s lateral displacement from the

66

center path of the corridor. This information allows for the sacrifice of the users lateral

distance from a center path in favor of a position that can only be on the path, see

Figure 3.18. Geometric-point-to-curve map matching, as described in [46], is one of the

simplest and most effective ways of accomplishing this task. This map matching technique

takes the approximated coordinate of a user, finds the closest line that point is located to,

and then projects that point onto that line. Map matching is the final step of the developed

2D localization algorithm and removes a majority of the drift errors that arise from the

IMU and RFID localization. Since the drift errors can quickly become nonphysical and

destructive to the overall localization, this is a reasonable trade off. The code used to

perform the map matching is shown in Listing C.16 and is the MATLAB adaptation of [47].

Figure 3.18: Diagram of point-to-curve map matching. All lateral position information is
lost as the user’s estimated position is projected onto the center path.

The inputs to the map matching code are the user’s estimated position obtained from

the previous localization functions in the algorithm as well as an approximation of the

environment map using lines along the center paths. Each of these lines are a line segment

which have a coordinate to map the beginning of the line and a coordinate to map the end

of the line segment. For each of the user’s estimated position coordinates, the map

matching algorithm finds the closest line segment, identifies where the point is in relation

to the line segment, and then finally projects where the point falls onto the line segment.

Figure 3.19 graphically shows the geometry used to project the point to the line as well as

67

the different scenarios that the point could be in relation to a given line segment.

Figure 3.19: The three possible scenarios when matching a point to curve; figure modified
from the one shown in [47]. P0 is the point that is being matched. P1 is the starting
coordinate of a line segment. P2 is the end coordinate of a line segment. A,B,C,D are
geometric quantities used in the map matching code. The red dot is the map matched point.
The white dot shows where the point would have projected to if the line extended to infinity.
See Listing C.16

Given a line segment that begins with coordinate P1(x1, y1) and ends in P2(x2, y2), and

a user’s estimated position coordinate P0(x0, y0), we seek the user’s map matched point

PM(xm, ym) [47]. We first calculate the vectors A, B, C, D using equations (3.23), (3.24),

(3.25), and (3.26). These vectors are: the beginning of the line segment to the user’s

estimated coordinate, the vector from the beginning of the line segment to the user’s

estimated coordinate, the X component of the line segment, and the Y component of the

line segment, respectively. The line segment, ~L, is denoted by equation (3.27) and the

vector from P1 to P0 is denoted by ~T , obtained from equation (3.28).

68

~A = (x0 − x1)̂i (3.23)

~B = (y0 − y1)ĵ (3.24)

~C = (x2 − x1)̂i (3.25)

~D = (y2 − y1)ĵ (3.26)

~L = ~C + ~D (3.27)

~T = ~A + ~B (3.28)

After the calculations of these four vectors, the dot product of the point onto the line

segment,~L , is given by:

~T · ~L = (~A ∗ ~C) + (~B ∗ ~D) (3.29)

and the squared magnitude of ~L is give by:

∥

∥

∥

~L
∥

∥

∥

2

= (~C ∗ ~C) + (~D ∗ ~D) (3.30)

Dividing the dot product projection by the squared magnitude of the line segment, gives

the equation (3.31) which provides the magnitude of the projected vector,
∥

∥

∥

~M
∥

∥

∥
.

∥

∥

∥

~M
∥

∥

∥
=

~T · ~L
∥

∥

∥

~L
∥

∥

∥

2
(3.31)

The magnitude of ~M determines where the map matched point is relative to the line

segment. If
∥

∥

∥

~M
∥

∥

∥
is greater than one or less than zero than it lies outside of the line

segment and must be matched to either P1 or P2, respectively. Refer to Figure 3.19. If
∥

∥

∥

~M
∥

∥

∥
is between zero and one then it falls inside the line segment and equations (3.32) and

(3.33) can be used to find the matched coordinate.

xm = x1 +
∥

∥

∥

~M
∥

∥

∥
∗ ~C (3.32)

ym = y1 +
∥

∥

∥

~M
∥

∥

∥
∗ ~D (3.33)

Finally, the following equations find the distance from the line segment to the user’s

estimated position, which is the same as the distance from PM to P0:

69

Dx = x0 − xm (3.34)

Dy = y0 − ym (3.35)

Distance =
√

(D2
x + D2

y) (3.36)

The code contained in Listing C.16 calculates the matched coordinates and distance for

every line segment in the entire map for each user’s estimated position. Only the matched

coordinate that corresponds to the shortest distance to a line segment will be assigned and

the user’s position will be matched to that line segment.

The pre-map matched results and post-map matched results from the experiments

conducted in Brown building are shown in Figure 3.20. The left figures shows how

gyroscope’s heading readings accumulate error very quickly as the user progresses through

the hallway, making the user to appear that they are walking at an angle away from the

center of the hallway which would eventually take them through a wall (nonphysical). On

top of this, the initial position provided by the RFID 2D estimate shifts both the blue and

red lines away from the center of the path. The right figure shows the map matched result

where it is obvious where the user went. The right figure also shows one of the weaknesses

of the map matching, in the case of the red zone, where map matching cannot correct for

the shift of the entire line which leads to red curve not connecting to the green curve (on

top of the errors from non-uniform gait).

70

Figure 3.20: Pre-map matching user’s estimated positions (left). Post-map matching user’s
estimated position (right). Data taken in the hallway of Brown building. The solid blue line
denotes the positions associated with zone 1. The red line with crosses denotes the positions
associated with zone 2. The green line made of circles denotes the positions associated with
zone 3. The solid black line is the center path of each of the hallways as well as the path the
user walked. The red diamonds indicate where the RFID tags were placed.

The point-to-curve map matching technique allows for a cleaner estimate of a user’s

position on a map with the addition of a couple of errors. The loss of the lateral positional

information adds error proportional to the width of the corridor, which is why this

technique should only be applied to narrow corridors. Another error that this technique

accrues is when the approximated positions of the user are at a significant different heading

than the heading of the center path. Only the component that is parallel to the center

path will be recorded so a large heading deviation will result in an under approximation of

the user’s distance along a path. If the heading is exactly 90 degree different, then it will

appear that the user is stationary on the path and no forward movement was achieved.

Another error that arises from this technique is when the user’s positions bends around a

90 degree path, the coordinates will be matched around the turning point but it will

appear that the user ’jumped’ from one line to the next. This happens when the path

estimate is on the interior of a path that has a turn. The last error that occurs with map

matching is when a map has numerous paths that are tightly clustered together, such as a

71

4-way intersection, and the user’s map matched path bounces back and forth between the

different curves. It is up to the previous steps of the localization to get the user estimated

close enough for map matching to be effective. Some of these errors are discussed in detail

in [46].

3.3.8 Plotting

As the ZCA finishes with the map matching function, it now moves on to plot the

user’s 2D coordinates through the entire mine. This step may seem trivial but due to the

zone structure of the algorithm, the plotting function needed to be completely automated

and scalable to an inordinate number of zones. The solution was to assign each of the data

structs in each zone a unique color and linestyle. Even though each data struct in the

central loop of the ZCA corresponds to a zone transition it also contains the zone number

that the user is operating in. This means that if a user moves from zone 1 to zone 2 to

zone 3 and then back to zone 2, the plotted results from zone 2 will have the same color

and linestyle on both zone transitions. The code written in [41] was essential in developing

this capability. The plotting function in the ZCA also reads in all of the tag coordinates

and the line map approximation and plots them on the figure with no extra work needed

by the user. At the beginning of the ZCA the user can enter a degree value which the

plotting function will use to rotate all 2D results, line map, and tag coordinates about the

origin to better align with a different coordinate axis. All of this plotting functionality

makes generating the final result figures very easy and scalable to massive environments.

Examples of the final result figures are provided in the next chapter and will show the

results of the Brown building and the Edgar mine measurement experiments.

72

CHAPTER 4

SYSTEM MEASUREMENTS

4.1 Experimental Results

The testing of the localization prototype and ZCA were carried out in two

environments: Colorado School of Mines’s Brown building, and Edgar experimental mine.

Brown building was used for the majority of the testing due to convenience but also

because it was a simple environment with few of the challenges present in underground

mines. Edgar mine was the final testing ground for the system as it was an actual

underground mine.

4.1.1 Brown Building Experiment

The 3rd floor of Brown building provided an ideal testing environment as the walking

surface was flat with no obstacles and the walls were perfectly smooth. Figure 4.1 shows a

picture of zone 1 and Figure 4.2 shows a picture of zone 3 in Brown building. Zone 2 is in

the corner or the two hallways. The floor tiles in Brown building were exactly 1 foot by 1

foot so it was easy to mark the locations of the tags and the user’s path. The look-up-table

method described in chapter 3 uses multiple antenna orientations in different parts of the

environment to build up the data. For the Brown building tests, only one antenna

configuration in the intersection was used to build up the the look-up-table. This resulted

in a moderate RFID 2D positioning error for these experiments but influenced the

improved look-up-table generation procedure that was used in Edgar mine.

73

Figure 4.1: Picture of zone 1 in Brown building experiment.

Figure 4.2: Picture of zone 3 in Brown building experiment.

74

Figure 3.20 shows the user’s estimated position, before and after map matching. The

user starts on the bottom left of the plot at (0’,0’), walks along the X axis to coordinate

(52’,4’), and then turns 90 degrees and walks along the Y axis up to the coordinate

(52’,60’). At this point, the user stays stationary till the data acquisition system finishes

running. Because the user does not step, the algorithm successfully keeps the user at this

point. There are three zones for this measurement each with 6 RFID tags. The colors of

the localized positions in zones 1, 2 and 3, are blue, red, and green, respectively. The first

observation is that the gyroscope drifts very quickly in the 1st and 2nd zones, with very

little drift in the third zone. The RFID 2D position appears to have shifted the blue zone

to the right by a foot or two as the initial position should have been closer to the origin. If

the RFID 2D position was accurate, the line would start before the zone, ever so slightly.

The blue curve is also shifted in the Y direction by about 5 feet at the beginning which is

due to the RFID initial position being off. The error in the RFID initial position is very

clear in zone 2 where the line is shifted below and to the right of the path. If this shift was

not here, the red line before the turn would be right on the path and the points after the

turn would have brought it closer to connecting with zone 3. Zone 3 shows no obvious signs

of error from either the RFID initial position or gyroscopic drift.

After map matching, the lines corresponding to the positions in each zone get snapped

to the line map approximation and immediately we see that zone 1 connects to zone 2 very

well but zone 2 does not connect to zone 3 very well. This is due to the underestimation of

the user’s gait length and the shift from the RFID initial position error. If the blue line

had a correct initial position, the entire line would be shifted to the left and it too would

not connect to zone 2. The pre-characterization experiments established the user’s gait

length at around 1.3 feet per step but this number would need to be increased to around 2

feet per step for the lines to connect. For the sake of not deviating from the

pre-characterization, the post-processing code uses 1.3 feet, even though the artificially

increased 2 feet would have connected better.

75

The experiment in Brown building showed good results with only 9 feet of disconnect

between zones 2 and 3 a third of which was accounted for by RFID 2D positioning error.

The dead reckoning drift increased rapidly even for this small scale experiment but the

map matching was able to successfully correct it. This experiment showed that the

look-up-table is crucial in reducing the RFID 2D positioning error and this lesson

influenced the creation of the look-up-table generation method described in chapter 3

which was enacted in the Edgar mine experiments.

4.1.2 Edgar Mine Experiment

Edgar mine provided no such luxuries as Brown building. The mine was full of

obstacles such as low hanging ceiling, railroad tracks, and mining vehicles. When the user

avoided these obstacles, their gait length and heading would change, adding error to the

dead reckoning position. On top of this, the walls of Edgar mine were jagged; oscillating

between jutting rocks and 3 foot recesses which changed the scattering of the RFID tags.

These challenges are commonplace inside of mines and relatively minor compared to the

other hazards that miners must avoid.

The experiment route in Edgar mine is shown in Figure 4.3. The user starts at the

’START’ marker, walks to the first intersection and takes a left into A-Left. Immediately,

the user enters another intersection where they make a right onto the path that connects

A-Left to B-Left by way of the Shop. The user leaves this path by making a right onto

B-left and then traveling immediately into another large intersection. This intersection was

the most spacious in the mine, requiring tags to be placed at the entrances of all possible

routes out. In this zone, the user made a left turn into the Miami tunnel and then an

immediate right into B-Right. The user advances along B-Right and makes a U-turn right

before the B-Right Raise crossing. The user walks back along B-Right and makes a left

onto the Miami tunnel. The measurement ends when the user walks past the Air Door in

between the Bator Stope and A-Left. The measurement did not continue past this point as

there was a large rail car blocking the route back to the starting point. This measurement

76

was repeated twice with the results being exactly the same, showing that the system gives

repeatable results over the large mine environment. Pictures of zones 1, 3, 6, and 8 are

shown in Figure 4.4, Figure 4.5, Figure 4.6, Figure 4.7, and Figure 4.8. These zones

exemplify different aspects of the challenging underground mine environment from a

over-the-air communications perspective.

Figure 4.3: User’s path in the Edgar mine experiment. User starts at the ’START’ marker
and stops at the ’END’ marker, which is right before the intersection. The blue turn around
arrow is where the user turned 180 degrees.

77

Figure 4.4: Picture of zone 1; an exemplary straight section. The red ovals highlight the
tags in view.

78

Figure 4.5: Picture of zone 3; an exemplary narrow intersection with the trolley acting as a
large scatterer. The red ovals highlight the tags in view.

79

Figure 4.6: Picture of zone 6; a straight section full of mining equipment making it a complex
scattering environment. The red ovals highlight the tags in view.

80

Figure 4.7: Picture of zone 8; an exemplary spacious intersection. The red ovals highlight
the tags in view.

81

Figure 4.8: Another view of zone 8. The red ovals highlight the tags in view.

82

The results from this experiment are shown in Figure 4.9 and Figure 4.10. Figure 4.9

show the output plots of the ZCA without map matching. The predicted heading of the

user’s turns were either overshot or undershot. All of the intersection zones: 3, 4, and 8

with the exception of zone 7 were affected by the gyroscopic drift. Interestingly, the

gyroscope seemed to perfectly record the 180 degree turn in zone 9 but then started to

drift afterwards. None of the heading drifts were large enough to create bad results

post-map matching. After map matching, the heading drifts disappear and the final results

in Figure 4.10 look very good with issues only with the lines not connecting to each other.

The lines do not connect to each other due to the fluctuations in the user’s gait length as

well as errors in the RFID initial position. Future improvements to the system will need to

use an adaptive gait estimator to mitigate these errors. Zones 1, 4, 5, 6, and 10 were

significantly affected by the gait length undershoot. For the Edgar mine

pre-characterization experiments, the user’s gait length averaged out to be 2.3 feet per step

which is a foot greater than the average step distance obtained in Brown building (same

user). The step length would have to be 2.7 feet for all lines to connect but would result in

zones 7, 8, and 9 overlapping each other. This drastic increase over the Brown building gait

length makes sense as the user was stepping over obstacles, such as rail road tracks, and

ducking to avoid the low hanging ceilings. This reason is also why zones 10 and 11 have

significant gyroscopic deviation for zones that are in the straight sections of the mine.

Towards the end of the data acquisition the reader would consistently fail as the user

walked past the tags in zones 10 and 11, so for the later experiments in the mine, the user

turned their head as they walked through these zones so the main beams of the antennas

were never directly in front of the tags at very close range. By doing this, the reader

stopped erroring out in these two zones. Because the IMU was mounted at chest level, the

heading deviation from turning the head while walking was very low and did not affect the

final results. This is a clear reason for why the IMU cannot be placed on the hardhat in

future prototype iterations.

83

Figure 4.9: Final results of the Edgar mine tests pre-map matching.

Figure 4.10: Final results of the Edgar mine tests post-map matching.

84

CHAPTER 5

DISCUSSION, FUTURE WORK, AND CONCLUSION

5.1 Discussion

Due to the mine being a GPS-denied environment, there was no feasible way of using a

different system to track the user and truly bound the error on the system. However, data

collected with the system revealed four main errors, listed in order of impact: gait length,

RFID initial position, gyroscopic drift, and map matching projection. Even with these

errors, the localization system functioned successfully showing that both the look-up-table

generation process is robust and that tag placement is forgiving.

The average gait length of the user is very easy to obtain and implement in the dead

reckoning algorithm at the expense of gait length errors accruing proportional to distance

that the zones are apart from each other. As the user progresses through the mine, various

scenarios will cause the user to walk at a faster pace, slower pace, wider pace, or narrower

pace. For the Edgar mine results, the lines between zones had around 10 feet of gap that

was primarily due to the gait length underestimation because the user had an accelerated

gait. In developing the localization system, the hypothesis was that the user’s gait length

would fluctuate around the average gait length where the errors in the shorter steps would

be negated by the larger steps. It is clear now that a more advanced gait estimation

algorithm, is needed to fix this issue.

Gyroscopic drift is only obvious before the map matching as it will often show the user

walking through a wall. After map matching, this error translates into a shorter line as

only the component of the predicted path that is parallel to the line map, is kept. For

instance, if the gyroscope drifted to a 90 degree heading difference, and the result was map

matched, the user would appear stationary and all points beyond would be error. This is

why it is the second most impactful error. Fortunately, the Edgar mine results only had

85

minor heading drifts in some of the intersection zones which the map matching algorithm

was able to correct for.

The RFID initial position is the anchor point for the dead reckoning estimates in the

zones. The dead reckoning calculations that use the IMU data before the initial position

reference this point and the dead reckoning calculations that use the IMU data after the

initial position also reference this point. If the initial position is significantly off, then every

point on the line will have a 2D offset. Again, this error is really only visible before the

map matching but it is obvious in the map matched results whenever the user appeared to

have jumped a corner in an intersection or if the user appears to have gone a foot or two

down a route that was different from the one they actually went down. The Edgar mine

results show this error occurring in Zones 3 and 4 where the user jumped onto the path

from the path they turned from but this does not contribute to the error significantly.

However, in the results for Brown building, Figure 3.20, this error is substantial. In this

figure, the entire curve for zones 2 is 2-4 feet below and to the right of the curve which

adds to the discontinuity between zones 2 and 3 when map matching is applied. On this

figure, zone 1 is also shifted above the path by 4 to 6 feet but this shift is corrected by the

map matching. Post-map matching, the lateral shift on the path is the only error the

initial position contributes on zone 1. This error is minor on straight sections and

significant on intersections.

As the old saying in the simulation community goes, ’garbage in, garbage out’, the map

matching algorithm relies heavily on the inputs being as accurate as they can be.

Projecting onto a dimension by definition removes information, which translates into error.

To minimize the error, minimize the projection distance. With significant angular

difference between the predicted path and the map’s path, the projection will have distance

loss proportional to the angular difference between paths. Intersections are particularly

tough on map matching as there are numerous lines coming together at a point and any

error from the RFID initial position offset will cause the algorithm to place a point on a

86

line that is completely different from the user’s traveled one. Overshoots of the user’s gait

estimate led to overshoots in the predicted path which when map matched, could be placed

on the wrong line in the map. Since the predicted positions for both the Brown building

and Edgar mine were decent, the map matching algorithm did not need to correct much

but it did improve the user’s visual confidence in interpreting the final output.

Throughout the mine, the look-up-table held up to the changes in the environment.

This proves that combining multiple RSSi vs. distance measurements taken in diverse

environments with various antenna orientations and then fitting a look-up-table to all of

them together was a robust way to create the look-up-table. The shop is a complex

environment from an RF perspective as it is a large opening with rows of large metal

machines in the middle of it, which can scatter RFID signals. The intersections were

expansive, deviating from the waveguide effect that was a characteristic of the narrow

tunnels and still the RFID initial position worked. Besides the issues in Edgar mine’s zones

10 and 11 where the antenna got too close to the tags, the RFID 2D algorithm correctly

placed the user’s 2D position in all of the narrow straight section zones. Even in zones 10

and 11 when user turned their head so the antennas read the tags off-broadside, the system

could still lock onto an initial position inside each zone.

The tags in the mine were placed haphazardly throughout each zone, in relatively low

numbers. There was no need for precise spacing between tags nor was there a need for

optimal positioning of the tags within a zone to make it easier for the RFID 2D algorithm,

just the criteria that at least 3 tags could be read within a specified time window at some

point in the zone. Some tags were placed in the troughs of the mine walls while some were

placed on the pieces that jutted out. Some tags had significant loading from the

surrounding rock and some tags were practically hanging in free space. Even with this

casual tag placement, the algorithm never needed to use the back up initial condition that

was established in the pre-characterization zone connection array. Every zone had a point

where at least three unique tags could be read in rapid succession. This speaks to the ease

87

at which any user can setup the environment as well as how resilient the system is to the

environmental influences on the wireless channel.

The system’s zone based localization successfully bounded the errors from both the

IMU and RFID positioning. Using this device, the miner will not only know what zone

they were in but will also have a fine grained estimate of their position inside of a zone.

The errors discussed in this section are significant, but there are many hardware and

software improvements that will improve mitigate them. Some of these improvements will

be discussed in the following sections.

5.2 RFID System Improvements

This system relies heavily on the RFID to determine the zone the presence of a user as

well as determine the initial position inside a zone. Currently, the RFID hardware is prone

to erroring out and the RFID 2D localization algorithm will sometime give an initial

position with high error. If the RFID hardware can be made more resilient, and the

associated RFID software can be more reliable then future iterations of the localization

system can fuse the IMU and RFID estimates whenever there are three unique tags in

view, not just for the initial position. The main improvements are: more accurate and

precise RFID readings; incorporate more information into the tag reads such as the

angle-of-arrival (AoA), and time-of-arrival (ToA); use the tag’s changing phase as part of

the algorithm; get smaller readers and smaller antennas so the entire RF system can be

mounted on the helmet; and finally, improve the read range. This section will suggest some

hardware improvements to the system that will enable the improvements mentioned above.

The current antennas on the helmet are circularly polarized, directive, and have high

gain but are also large, and relatively heavy. It will be tough to beat the gain performance

of the antennas as they can only be made so small for 915 MHz, however, antennas that

conform to the shape of the helmet would be much more desirable even at the cost of 1-2

dB of gain loss. Some examples of flexible and conformal antennas are discussed in [48],

[49], and [50]. Hardhat (helmet) specific antennas are discussed in [51], [52]. Beyond

88

making the hardhat antennas smaller and sleeker, if a circular or semi-circular antenna

phased array is placed onto the helmet it can provide angle-of-arrival information. Making

a small, conformal, directive, phased array at 915 MHz to go on a helmet is no trivial task

and this could be an area of high impact to the antenna community and the first-responder

community. An example of a body-wearable with a circularly configured phased array is

described in [53]. Obtaining angle-of-arrival information could add a significant increase to

the accuracy of the localization code. Since the tag 2D coordinate is known, the angle from

the AoA and the distance from the RSSi would be all that is needed to determine the

user’s 2D coordinate. [24], [54], and [55] are examples of algorithms that determine AoA

and use it for object tracking.

The current linear RFID tags work really well in the mine even with the loading from

the rock being in close proximity to them. Because the tags are linear and the reader

antennas are RHCP, there is a half-power loss (3dB) when the tag reads the inquiry signal

from the reader and a half-power loss when the reader receives the tag’s radiated

information. If the tag was circularly polarized then there would be no loss due to

polarization mismatch. Some circularly polarized tags are described in [56], [57], and [58].

The dipole-like radiation pattern of the linear tags will have light up a significant portion

of the mine’s rock walls in the azimuth plane of the tag. Due to the random tag placement,

the radiation patterns of the tags will have varying levels of constructive and destructive

interference caused by the close proximity of the rock, distorting the radiation pattern in

unpredictable ways. The RFID tags can be further improved by having a ground plane

behind them that is resistant to the loading effects of the rock, like the ones described in

[56] and [58]. This will result in the tags having a much more predictable radiation pattern,

less loss from the rock in the near-field, and higher directivity. The tags could also be

designed to be chipless, which gives the designer much more flexibilty to the frequency,

modulation scheme, and the information that is encoded in the tag. With chipless RFID,

the modulation of the signal could lead to better read range and lower bit error rate inside

89

of the mine, as described in [59]. The downside to chipless RFID is that the RFID readers

will need to be replaced by software defined radios which adds considerable more

complexity to the system and increased development time. [60], References [61], and [62]

are all examples of chipless RFID systems.

The system in its current state must be contained on the vest due to the size of all of

the components. The RFID readers are by far the largest components as they use the large

M6e 4 chip. There is a small arduino hat from [63] that shrinks the board down

significantly, as the expense of having a maximum output power of 27 dBm instead of

30dBm. If the CP tags were implemented, then the 3 dB of gain from the matched

polarization would make up for the 3 dB of loss by switching readers. If the arduino is

unnecessary then small dedicated boards with just two M6e nano chips could be made as a

hat for the Raspberry Pi. With this improvement, it is possible for the entire system to fit

on a helmet or on a belt.

5.3 IMU Improvements

The gait length estimate caused significant error in the final 2D position but there are

many solutions in the literature that can mitigate this error. Dead reckoning with the IMU

is an entire area of research by itself with many researchers using Kalman filters, statistical

models, autocorrelation, pose estimation, and many other techniques to improve the

estimate. The first place to start when improving the gait length estimate is with the

acceleration data of the IMU. [64] and [65] both performs rigorous analyses on the

accelerometer waveforms to accurately determine a user’s step distance based on the trunk

movement. [66] uses wavelet decomposition, and Kalman filters to determine the step

length for each leg so if the user has a disability or injury results in a non-symmetric stride

this algorithm will still be able to obtain the correct gait value. [67] uses unbiased

autocorrelation analysis of the accelerometer data to estimate the user’s step and stride

regularity as well as symmetry of the steps but would be restricted to being purely a

post-processing solution. [68] suggests training a hidden Markov model and a Gaussian

90

mixture model to classify when the user is in various states such as walking, running,

walking up an incline, etc. which will allow for a more precise gait length estimate for

various tasks. All of these algorithms can be used in conjunction with one another to

improve the dead reckoning estimate of the system.

5.4 Towards a Real-Time Algorithm

This localization system was developed to give positioning estimates in conjunction

with a dust monitor. The user only obtains the data from the dust monitor when the data

acquisition period is over and post-processes the results. Since dust monitoring was not

real-time, the localization system did not need to be real-time to solve the problem. By

modifying the system to be real-time, it could be used to inform the miner of their location

in the mine which will allow for other applications. Once the real-time algorithm is

operational it could be integrated into the existing wireless communication infrastructure

in the mine such as the leaky feeder line, allowing for the system to relay the miner’s

position back to the surface.

The presented localization algorithm can be made real-time by converting the

MATLAB functions into ones that can be integrated onto a programmable interface

controller (PIC) or written in Python to run on the Raspberry Pi. Figure 5.1 shows the

block diagram of how the real-time version of this algorithm may work, assuming that no

hardware or software improvements were implemented from the previous two sections. This

high level diagram does not assume any hardware nor does it suggest optimal integration.

The IMU data and RFID acquisition must sample as fast as they can with no

interruptions, therefore, they need to run in parallel with a central function that uses their

data to perform the dead reckoning and map matching. Both the RFID and IMU data

acquisition functions will take care of very basic operations within themselves. The IMU

function will take care of determining when steps occur and keeping a cumulative heading

reading. The RFID function will take care of determining when three unique tags within a

specified time window are read, finding the zone and tag information that will be used by

91

the rest of the program, and resetting the initial heading of the IMU. The central program

will update the user’s position every time it gets a step value from the IMU; this involves

using the step length for distance, using the cumulative heading for direction, and the mine

map to immediately place the coordinate onto the path. This central function will also

look for the RFID function to send the initial 2D position. Once it has the initial position,

it will update the position estimate and all future steps in the same zone will be referenced

to this initial position. At the end of each step calculation, the system will display where

the user is on the map.

Figure 5.1: Block diagram for the proposed real-time algorithm.

5.5 Conclusion

The presented localization system successfully localizes the user inside an underground

mine with a minimal amount of added infrastructure. Even with sparse tag placement just

in the zones, the system had enough information to provide the initial position of the user

without the need for an approximate position defined by the user. The IMU provided fine

detail of the user’s position in and between zones, once its errors were bounded by the zone

RFID position estimate. The zone structure kept the estimated positions with large errors

from influencing the position estimates of future zones. The code provided in this thesis

allows for the system to work in an arbitrary sized mine with a massive number of zones

each with many tags. Even though there are many improvements to be made on the

hardware and software levels, this modular system provides future researchers a way to

92

insert their IMU or RFID algorithms without changing the entirety of the code. Hardware

improvements will reduce the size of the system, improve the read range, and increase the

reliability. The conversion of the algorithm from a post-processing one to a real-time one

will allow for a plethora of other applications inside of the mine. This research advances

underground positioning by demonstrating a simple, robust, modular system that uses the

minimum amount of added infrastructure to provide the position of a miner to any

environmental sensor thereby allowing for surgical hazard mitigation and the increased

safety for all in the mine.

93

REFERENCES CITED

[1] P. Maier, P. Hartlieb, and J.F. Brune. Laboratory Scaled Coal Dust Explosions and
Physical Test Results for CFD Explosion Models. BHM Berg- und Hüttenmännische
Monatshefte, 165(6):265–269, 2020. ISSN 1613-7531. URL
https://doi.org/10.1007/s00501-020-00985-0.

[2] J.F. Brune, K.L. Cashdollar, and R.K. Zipf. Explosion Prevention in United States
Coal Mines. In Proceedings of the 32nd international conference of safety in mines
research institutes, pages 1–7, 2007.

[3] J.F. Brune. Mine Ventilation Networks Optimized for Safety and Productivity. In
Advances in Productive, Safe, and Responsible Coal Mining, pages 83–99. Woodhead
Publishing, 2019. ISBN 978-0-08-101288-8. doi:
https://doi.org/10.1016/B978-0-08-101288-8.00005-5. URL
https://www.sciencedirect.com/science/article/pii/B9780081012888000055.

[4] Thermo Fisher Scientific. PDM3700 Instruction Manual, 2016. URL https:

//assets.thermofisher.com/TFS-Assets/LSG/manuals/EPM-manual-PDM3700.pdf.

[5] N. Tahir, M.Md. Karim, K. Sharif, F. Li, and N. Ahmed. Quadrant-Based Weighted
Centroid Algorithm for Localization in Underground Mines. In Proceedings of the 2013
13th International Conference on Wireless Algorithms, Systems, and Applications,
pages 462–472. Springer International Publishing, 2018. ISBN 978-3-319-94268-1.

[6] H. Xu, F. Li, and Y. Ma. A Zigbee-Based Miner Localization System. In Proceedings
of the 2012 IEEE 16th International Conference on Computer Supported Cooperative
Work in Design (CSCWD), pages 919–924, 2012. doi: 10.1109/CSCWD.2012.6221931.

[7] P. Lin, Q. Li, Q. Fan, X. Gao, and S. Hu. A Real-Time Location-Based Services
System Using WiFi Fingerprinting Algorithm for Safety Risk Assessment of Workers
in Tunnels. Mathematical Problems in Engineering, 2014(371456), 2014. URL
https://doi.org/10.1155/2014/371456.

[8] F. Pereira. Positioning Systems for Underground Tunnel Environments. PhD thesis,
University of Porto, Porto, Portugal, 2016.

94

[9] A. Dehghan Firoozabadi, C. Azurdia-Meza, I. Soto, F. Seguel, N. Krommenacker,
D. Iturralde, P. Charpentier, and D. Zabala-Blanco. A Novel Frequency Domain
Visible Light Communication (VLC) Three-Dimensional Trilateration System for
Localization in Underground Mining. Applied Sciences, 9(7), 2019. ISSN 2076-3417.
doi: 10.3390/app9071488. URL https://www.mdpi.com/2076-3417/9/7/1488.

[10] A. RayChowdhury, A. Pramanik, and G. Roy. New Approach for Localization and
Smart Data Transmission Inside Underground Mine Environment. SN Applied
Sciences, 3, 06 2021. doi: 10.1007/s42452-021-04589-2.

[11] P. Palacios Játiva, C.A. Azurdia-Meza, M. Román Cañizares, D. Zabala-Blanco, and
C. Saavedra. Propagation Features of Visible Light Communication in Underground
Mining Environments. In International Conference on Applied Technologies, pages
82–93, Cham, 2020. Springer International Publishing. ISBN 978-3-030-42531-9.

[12] Q. Niu, X. Yang, and Y. Yin. IPL: Image-Assisted Person Localization for
Underground Coal Mines. Sensors, 18(11), 2018. ISSN 1424-8220. doi:
10.3390/s18113679. URL https://www.mdpi.com/1424-8220/18/11/3679.

[13] N. Xiao, X. Li, G. Qin, S. Ma, and L. Zhang. Localization System Based on RFID and
GIS for Underground Moving Targets. In 2008 IEEE International Conference on
Mechatronics and Automation, pages 808–813, 2008. doi:
10.1109/ICMA.2008.4798861.

[14] K. Hlophe. An Embedded Underground Navigation System, 2011.

[15] A. Poulose, O. Eyobu, and D. Han. An Indoor Position-Estimation Algorithm Using
Smartphone IMU Sensor Data. IEEE Access, 7:11165–11177, 2019.

[16] B. Li, K. Zhao, S. Saydam, C. Rizos, Q. Wang, and J. Wang. Positioning Technologies
for Underground Mines. Far East Journal of Electronics and Communications, 18(6):
871 – 893, 2018. URL http://dx.doi.org/10.17654/ec018060871.

[17] N.J. Lavigne and J.A. Marshall. A Landmark-Bounded Method for Large-Scale
Underground Mine Mapping. Journal of Field Robotics, 29(6):861–879, 2012. doi:
https://doi.org/10.1002/rob.21415. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21415.

[18] S. Rusu. Real-Time Localization In Large-Scale Underground Environments Using
RFID-Based Node Maps. M.S. thesis, Department of Mechanical and Aerospace
Engineering, Carleton University, Ottawa, Canada, 2011.
https://www.collectionscanada.gc.ca/obj/thesescanada/vol2/002/MR83067.PDF.

95

[19] J. Larsson, M. Broxvall, and A. Saffiotti. A Navigation System for Automated
Loaders in Underground Mines. Springer Tracts in Advanced Robotics, 25:129–140, 01
2005. doi: 10.1007/978-3-540-33453-8 12.

[20] P.K. Mishra, R.F. Stewart, M. Bolic, and M. Yagoub. RFID in Underground-Mining
Service Applications. IEEE Pervasive Computing, 13(1):72–79, 2014. doi:
10.1109/MPRV.2014.14.

[21] L. Ni, D. Zhang, and M. Souryal. RFID-Based Localization and Tracking
Technologies. IEEE Wireless Communications, 18(2):45–51, 2011. doi:
10.1109/MWC.2011.5751295.

[22] W. Zhu, J. Cao, Y. Xu, L. Yang, and J. Kong. Fault-Tolerant RFID Reader
Localization Based on Passive RFID tags. IEEE Transactions on Parallel and
Distributed Systems, 25(8):2065–2076, 2014. doi: 10.1109/TPDS.2013.217.

[23] A. Parr, R. Miesen, F. Kirsch, and M. Vossiek. A Novel Method for UHF RFID Tag
Tracking Based on Acceleration Data. In 2012 IEEE International Conference on
RFID, pages 110–115, 2012. doi: 10.1109/RFID.2012.6193037.

[24] A. Zarrini, A.Z. Elsherbeni, and J.F. Brune. Direction of Arrival Tag Response for
RFID Localization. Applied Computational Electromagnetics Society (ACES), 34(2):
323–325, 2019.

[25] NIOSH. Reverse Implementation of Radio Frequency Identification (RFID)
Technology for Personnel Tracking in Underground Mines.
Milestones in Mining Safety and Health Technology , 543(2011-209), 2011.

[26] C. Sunderman and J. Waynert. An Overview of Underground Coal Miner Electronic
Tracking System Technologies. In 2012 IEEE Industry Applications Society Annual
Meeting, pages 1–5, 2012. doi: 10.1109/IAS.2012.6374081.

[27] R. Haupt. Wireless Communications Systems. John Wiley & Sons, Hoboken, NJ, 2020.

[28] J. Lindblom, B. Hagman, and L. Crotser. SparkFun MPU-9250 Digital Motion
Processor (DMP) Arduino Library. GitHub, 2019. URL
https://github.com/sparkfun/SparkFun_MPU-9250-DMP_Arduino_Library.

[29] Analog Devices. Digital Accelerometer, ADXL345, 5 2009. Rev. 0.

[30] InvenSense Inc. ITG-3200, 3 2010. Rev. 1.4.

[31] Honeywell. 3-Axis Digital Compass IC HMC5883L, 5 2009. Rev. 0.

96

[32] J. Wang, Y. Guo, L. Guo, B. Zhang, and B. Wu. Performance Test of MPMD
Matching Algorithm for Geomagnetic and RFID Combined Underground Positioning.
IEEE Access, 7:129789–129801, 2019. doi: 10.1109/ACCESS.2019.2926098.

[33] Q. Huang, X. Zhang, and J. Ma. Underground Magnetic Localization Method and
Optimization Based on Simulated Annealing Algorithm. In 2015 IEEE 12th Intl Conf
on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on
Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable
Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom),
pages 168–173, 2015. doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.47.

[34] J. Lindblom. 9DoF Razor IMU M0 Hookup Guide. SparkFun Electronics, 2016. URL
https://learn.sparkfun.com/tutorials/9dof-razor-imu-m0-hookup-guide?

_ga=2.112718212.1838163393.1580079595-1050252564.1484965463#

resources--going-further.

[35] A.R. Jimenez, F. Seco, C. Prieto, and J. Guevara. A comparison of pedestrian
dead-reckoning algorithms using a low-cost mems imu, 2009.

[36] P. Gotthard. Python Wrapper for the ThingMagic Mercury API. GitHub, 2016. URL
https://github.com/gotthardp/python-mercuryapi.

[37] Pololu. Pololu 9V Step-Up/Step-Down Voltage Regulator S18V20F9, 2021.

[38] MPS. MP2307, 5 2008. Rev. 1.9.

[39] ThingMagic. M6e Family Hardware Guide, 3 2016. 09 Revision A.

[40] H. Ramezani. Single/Multiple target Localization. MATLAB Central File Exchange,
2021. URL https://www.mathworks.com/matlabcentral/fileexchange/

33792-single-multiple-target-localization?s_tid=srchtitle.

[41] A. Weiss. format plot.m. GitHub, 2021. URL
https://github.com/Sheekaboom/WeissTools/tree/master/WeissTools/MATLAB.

[42] B. Béjar, P. Belanovic, and S. Zazo. Distributed Gauss-Newton Method for
Localization in Ad-Hoc Networks. In 43rd Asilomar Conference on Signals, Systems,
and Computers, 7-10 Nov 2010; Pacific Grove, pages 1452–1454, 11 2010. doi:
10.1109/ACSSC.2010.5757776.

[43] R. Wang. Gauss-Newton Algorithm for Nonlinear Models.
http://fourier.eng.hmc.edu/e176/lectures/NM/node36.html, 2015.

97

[44] N. Yoder. peakfinder(x0, sel, thresh, extrema, includeEndpoints, interpolate).
MATLAB Central File Exchange, 2016. URL
https://www.mathworks.com/matlabcentral/fileexchange/

25500-peakfinder-x0-sel-thresh-extrema-includeendpoints-interpolate.

[45] T.T. Pham and Y.S. Suh. Histogram Feature-Based Approach for Walking Distance
Estimation Using a Waist-Mounted IMU. IEEE Sensors Journal, 20(20):12354–12363,
2020. doi: 10.1109/JSEN.2020.2999930.

[46] D. Bernstein and A. Kornhauser. An Introduction to Map Matching for Personal
Navigation Assistants. Technical report, New Jersey TIDE Center, Newark, NJ, 1996.

[47] J. Perina. Shortest Distance Between a Point and a Line Segment. Stack Overflow,
2011. URL https://stackoverflow.com/questions/849211/

shortest-distance-between-a-point-and-a-line-segment.

[48] H. Subbaraman. Printable Silicon Nanomembranes for Solar-Powered, Bi-Directional
Phased-Array-Antenna Communication System on Flexible Substrates. Technical
Report AFRL-OSR-VA-TR-2013-0081, Air Force Research Laboratory, Arlington,
Virginia, 2013.

[49] E. Crespo-Bardera, A. Garrido Martin, A. Fernandez-Duran, and
M. Sanchez-Fernandez. Design and Analysis of Conformal Antenna for Future Public
Safety Communications: Enabling Future Public Safety Communication
Infrastructure. IEEE Antennas and Propagation Magazine, 62(4):94–102, 2020. doi:
10.1109/MAP.2020.3000711.

[50] E. Çelenk and N.T. Tokan. Frequency Scanning Conformal Sensor Based on SIW
Metamaterial Antenna. IEEE Sensors Journal, pages 1–1, 2021. doi:
10.1109/JSEN.2021.3075556.

[51] J.J.H. Wang, J.K. Tillery, K.E. Bohannan, and G.T. Thompson. Helmet-Mounted
Smart Array Antenna. In IEEE Antennas and Propagation Society International
Symposium 1997. Digest, volume 1, pages 410–413 vol.1, 1997. doi:
10.1109/APS.1997.630181.

[52] S. Shabina. Smart Helmet Using RF and WSN Technology for Underground Mines
Safety. In 2014 International Conference on Intelligent Computing Applications, pages
305–309, 2014. doi: 10.1109/ICICA.2014.105.

[53] L. Januszkiewicz, P. Di Barba, and S. Hausman. Optimal Design of Switchable
Wearable Antenna Array for Wireless Sensor Networks. Sensors, 20(10), 2020. ISSN
1424-8220. doi: 10.3390/s20. URL https://www.mdpi.com/1424-8220/20/10/2795.

98

[54] K. Honda, D. Iwamoto, and K. Ogawa. Angle of Arrival Estimation Embedded in a
Circular Phased Array 4 × 4 MIMO Antenna. In 2017 IEEE Asia Pacific Microwave
Conference (APMC), pages 93–96, 2017. doi: 10.1109/.

[55] C.R. Karanam, B. Korany, and Y. Mostofi. Magnitude-Based Angle-of-Arrival
Estimation, Localization, and Target Tracking. In 2018 17th ACM/IEEE
International Conference on Information Processing in Sensor Networks (IPSN), pages
254–265, 2018. doi: 10.1109/IPSN.2018.00053.

[56] H. Chen, S. Kuo, C. Sim, and C. Tsai. Coupling-Feed Circularly Polarized RFID Tag
Antenna Mountable on Metallic Surface. IEEE Transactions on Antennas and
Propagation, 60(5):2166–2174, 2012. doi: 10.1109/TAP.2012.2189702.

[57] H.H. Tran, S.X. Ta, and I. Park. A Compact Circularly Polarized Crossed-Dipole
Antenna for an RFID Tag. IEEE Antennas and Wireless Propagation Letters, 14:
674–677, 2015. doi: 10.1109/LAWP.2014.2376945.

[58] Y. Chen and A.Z. Elsherbeni. Circularly Polarized RFID Tag Antenna Design for
Underground Localization System. In 2021 United States National Committee of
URSI National Radio Science Meeting (USNC-URSI NRSM), pages 205–206, 2021.
doi: 10.23919/USNC-URSINRSM51531.2021.9336514.

[59] A.E. Forooshani, S. Bashir, D.G. Michelson, and S. Noghanian. A Survey of Wireless
Communications and Propagation Modeling in Underground Mines. IEEE
Communications Surveys Tutorials, 15(4):1524–1545, 2013. doi:
10.1109/SURV.2013.031413.00130.

[60] R. Anee and N.C. Karmakar. Chipless RFID Tag Localization. IEEE Transactions on
Microwave Theory and Techniques, 61(11):4008–4017, 2013. doi:
10.1109/TMTT.2013.2282280.

[61] R. Rezaiesarlak and M. Manteghi. A Space-Frequency Technique for Chipless RFID
Tag Localization. IEEE Transactions on Antennas and Propagation, 62(11):
5790–5797, 2014. doi: 10.1109/TAP.2014.2350523.

[62] N. Zhang, M. Hu, L. Shao, and J. Yang. Localization of Printed Chipless Rfid in 3-d
Space. IEEE Microwave and Wireless Components Letters, 26(5):373–375, 2016. doi:
10.1109/LMWC.2016.2549264.

[63] N. Seidle. Simultaneous RFID Tag Reader Hookup Guide. SparkFun Electronics,
2017. URL https://learn.sparkfun.com/tutorials/

simultaneous-rfid-tag-reader-hookup-guide/all.

99

[64] Z. Wiebren and H. At L. Assessment of Spatio-Temporal Gait Parameters from
Trunk Accelerations During Human Walking. Gait and Posture, 18(2):1–10, 2003.
ISSN 0966-6362. doi: https://doi.org/10.1016/S0966-6362(02)00190-X. URL
https://www.sciencedirect.com/science/article/pii/S096663620200190X.

[65] S.M. Rispens, M. Pijnappels, K.S. van Schooten, P.J Beek, A. Daffertshofer, and J.H.
van Dieën. Consistency of Gait Characteristics as Determined from Acceleration Data
Collected at Different Trunk Locations. Gait and Posture, 40(1):187–192, 2014. ISSN
0966-6362. doi: https://doi.org/10.1016/j.gaitpost.2014.03.182. URL
https://www.sciencedirect.com/science/article/pii/S096663621400277X.

[66] A. Köse, A. Cereatti, and U. Della Croce. Bilateral Step Length Estimation using a
Single Inertial Measurement Unit Attached to the Pelvis. Journal of
NeuroEngineering and Rehabilitation, 9, 2012. doi: 10.1186/1743-0003-9-9.

[67] R. Moe-Nilssen and J.L. Helbostad. Estimation of Gait Cycle Characteristics by
Trunk Accelerometry. Journal of Biomechanics, 37(1):121–126, 2004. ISSN 0021-9290.
doi: https://doi.org/10.1016/S0021-9290(03)00233-1. URL
https://www.sciencedirect.com/science/article/pii/S0021929003002331.

[68] G. Panahandeh, N. Mohammadiha, A. Leijon, and P. Händel. Chest-Mounted Inertial
Measurement Unit for Pedestrian Motion Classification using Continuous Hidden
Markov Model. In 2012 IEEE International Instrumentation and Measurement
Technology Conference Proceedings, pages 991–995, 2012. doi:
10.1109/I2MTC.2012.6229380.

100

APPENDIX A

COST BREAKDOWN OF THE PROTOTYPE

Table A.1: List of devices used in the localization prototype and their respective costs.

Device Unit Cost Quantity Subtotal
RFID Development Kit $901 2 $1802

Raspberry Pi Touchscreen $61 1 $61
Razor 9 DoF IMU $50 1 $50

3D Print Filament Spool $45 1 $45
MOLLE Vest $44 1 $44

Raspberry Pi 3 B+ $40 1 $40
RHCP Custom Antennas $40 2 $80

RP-TNC Male to SMA Male RF Cable 6ft $39 2 $78
Battery Charger $35 1 $35
Mining Hard Hat $32 1 $32

1/4” Tie Wire Wedge Anchors $30 1 $30
Raspberry Pi Case $28 1 $28
MOLLE Pouches $28 2 $56

12V 7.0 AH Lead Acid Battery $26 2 $52
9V Step-Up/Step-Down Voltage Regulator $23 1 $23

Right Angle SMA Connector $15 2 $30
128 GB SD Card for Raspberry Pi $15 1 $15

Reflective Vest $15 1 $15
UBEC DC/DC Step Converter - 5V 3A $10 1 $10

1/4” MDF Board 2ft x 4ft $9 2 $18
RP-TNC Right Angle Connector $9 2 $18

24 AWG Silicon Wire - 1 foot $2 4 $8
22 AWG Silicon Wire - 1 foot $2 4 $8
5.5/2.1mm Barrel Connector $1 2 $2

AD-229r6 RFID tags $0.25 80 $20
- - Total $2572

101

APPENDIX B

DATA ACQUISITION CODE

Listing B.1: Bash script code to control the IMU and RFID Python functions.

##GET INPUT FROM USER##
echo Enter the runtime :
read runtime

##GRAB THE SYSTEM TIME (s ince EPOCH) tha t w i l l be passed in to a l l
subsequent f unc t i on s##

s t a r t t ime=$ (date +’%s ’)

##Print t ha t code i s s t a r t i n g##
echo Sta r t i ng execut ion o f IMU and RFID reade r s in background for

$runtime seconds

##RUN THE IMU IN THE BACKGROUND##
#Fi r s t argument corresponds to the system time
#Second argument corresponds to the user ’ s d e s i r ed run time
python3 . / imu mk3 ARGS . py ” $ s t a r t t ime ” $runtime &

##RUN BOTH READERS IN THE BACKGROUND ##
#Fi r s t argument corresponds to the l a s t number o f the USB por t
#Second argument corresponds to the antenna t ha t the reader i s

connected to
#Third argument corresponds to the system time
#Fourth argument corresponds to the user ’ s d e s i r ed run time
python3 . / rfid mk5 ARGS . py 0 1 ” $ s t a r t t ime ” $runtime &
python3 . / rfid mk5 ARGS . py 1 2 ” $ s t a r t t ime ” $runtime &

Listing B.2: Python acquisition code function to control the M6e readers.

#From h t t p s :// g i t hu b . com/ go t thardp /python−mercuryapi
#Note : to acces s por t s l i k e /dev/ttyUSB0 as a non−roo t user you may

need to add t h i s user
#to the d i a l o u t group :
#sudo usermod −a −G d i a l o u t $USER

102

#To f i nd what por t the reader i s on :
#1. Have reader unplugged
#2. Open termina l and enter : l s − l / dev/ t t y ∗

#3. Plug reader in
#4. re−run s t ep b e f o r e and f i nd the a d d i t i o n a l entry , i t shou ld
#be somethign l i k e : /dev/ttyUSB1 or /dev/ttyUSB0
#5. Change the l i n e : mercury . Reader (” tmr :/// dev/ttyUSB1”) wi th new path

#ARGUMENTS: com port an t index

#/−−−−−−−−INITIALIZATION CODE−−−−−−−−−/
import codecs
import mercury
import time
import sys
r e a d e r s e r i a l s t r i n g = ”tmr :/// dev/ttyUSB”+str (sys . argv [1]) #Arg must

be the # of the USB
r eader = mercury . Reader (r e a d e r s e r i a l s t r i n g)
output f i l ename = r ”/home/ pi /Documents/combined m6e imu/program output /

reader ” + str (sys . argv [1]) + ” out . txt ”

#/−−−−−−−−−−−−−−−SETUP READER−−−−−−−−−−−−−−−−−−−/
tx power = 3000 #measured in centidBm , max i s 3000
ant index = int (sys . argv [2]) #Which por t i s the antenna connected to ?
r eader . s e t r e g i o n (”NA”)
reader . s e t r e ad p l an ([ant index] , ”GEN2”)
reader . s e t h op t ab l e ([9 1 5 0 0 0]) #Lock Frequency
r eader . s e t g e n 2 t a r i (2)
reader . s e t g en2 q (1 , 2)
reader . s e t r ead power s ([(ant index , tx power)])
#pr in t (reader . g e t r ead power s ())

RUN TIME = f loat (sys . argv [4]) #Number o f seconds the reader w i l l read
f o r

#/−−−−−−−−−−−−−−−DECLARE TIME START−−−−−−−−−−−−−/
#s t o pwa t c h s t a r t = time . time () #S ta r t timer , a l l t ime va l u e s are

r e l a t i v e to t h i s .
s t opwatch s ta r t = f loat (sys . argv [3])
s a v e s t r i n g a r r a y = []

#/−−−−−−−−−−−CALLBACK FUNCTION FOR THE START READING SECTION−−−−/
#CSV Format : tag name , tag phase , t ag sy s t em t ime
def mycallback (tag) :

s a v e s t r i n g a r r a y . append (str (tag . epc) + ” , ” + str (tag . phase) + ” , ”
+ str (tag . r s s i) + ” , ” + str (tag . antenna) + ” , ” + str (time . time ()
−s t opwatch s ta r t))

103

#/−−−−−−−−−−−−−−−START READING−−−−−−−−−−−−−−−−−−/
#pr in t (”READ START”)
r eader . s t a r t r e a d i n g (mycal lback)
time . s l e e p (RUN TIME) #se t s the time the reader w i l l read f o r
r eader . s t op r ead ing ()
#pr in t (”READ STOPPED”)

#/−−−−−−−−−−−−−−−−−SAVE FILE−−−−−−−−−−−−−−/
o u t p u t f i l e = open(output f i l ename , ”w+”)
for l i n e in s a v e s t r i n g a r r a y :

o u t p u t f i l e . wr i t e (l i n e)
o u t p u t f i l e . wr i t e (”\n”)

o u t p u t f i l e . c l o s e ()

Listing B.3: Python acquisition code function to control the Razor 9DoF IMU.

#−−−−−−−−IF THE IMU IS ALREADY IN OUTPUT MODE THEN THE CODE WILL NOT
WORK−−−−−−−

#you w i l l know i f the imu i s o f f a space when the f i l e on ly has around
5 en t r i e s in i t

import time
import s e r i a l
import sys
#−−−−−−−−−−DECLARATIONS & INITIALIZATION−−−−−−−−

output f i l ename = ”/home/ pi /Documents/combined m6e imu/program output /
imu out”

s e r = s e r i a l . S e r i a l (
port=’ /dev/ttyACM0 ’ , #Sub j e c t to change , Find t h i s wi th the

arduino IDE
baudrate = 115200 ,
pa r i t y=s e r i a l .PARITY NONE,
s t opb i t s=s e r i a l .STOPBITS ONE,
by t e s i z e=s e r i a l .EIGHTBITS,
timeout=1

)

counter = 0
stop t ime = f loat (sys . argv [2]) #[s] time to s top read ing

space = ” ”

s a v e s t r i n g a r r a y = []

104

#−−−−−−−−START THE DATA OUTPUT FROM IMU−−−−−

s t opwatch s ta r t = f loat (sys . argv [1]) #Sta r t timer , a l l t ime va l u e s are
r e l a t i v e to t h i s

s e r . wr i t e (space . encode (” a s c i i ”))

#Read f o r s t op t ime durat ion from IMU
while (time . time ()−s t opwatch s ta r t) < s top t ime :

x=se r . r e ad l i n e ()
s a v e s t r i n g a r r a y . append (str (x . decode () . r s t r i p ()) + ” , ” + str

(time . time ()−s t opwatch s ta r t))
counter += 1

#−−−−−−STOP THE DATA OUTPUT FROM IMU & SAVE DATA−−−−−−−

s e r . wr i t e (space . encode (” a s c i i ”))

o u t p u t f i l e = open(’%s . txt ’ % output f i l ename , ”w+”)
for l i n e in s a v e s t r i n g a r r a y :

o u t p u t f i l e . wr i t e (l i n e)
o u t p u t f i l e . wr i t e (”\n”)

o u t p u t f i l e . c l o s e ()

105

APPENDIX C

MATLAB CODE

Listing C.4: Pre-processing script where the user manually enters in the measured data

from the various RSSi vs distance experiments and the script then generates a third order

polynomial to curve fit the data.

%Code combined from :
%h t t p s ://www. mathworks . com/ he l p /matlab / r e f / p o l y f i t . html#d123e1032145
%h t t p s ://www. mathworks . com/ he l p /matlab / r e f / s c a t t e r . html
%h t t p s ://www. mathworks . com/mat l a b cen t ra l /answers/401297− he l l o−how−do−i−

d i sp l ay−the−equat ion−for−a−p o l y f i t −l i n e−on−t h i s−p l o t

%% NARROW SECTION
% Defined d i s t an c e s and RSSI Vals
l e f t t a g l a t e r a l d i s t = 2 . 3 3 ;%f t
r i g h t t a g l a t e r a l d i s t = 3 . 5 ;%f t

l e f t t a g p a r a l l e l d i s t = [0 , 1 , 2 , 3] ;%f t (p a r a l l e l to the normal v e c t o r
o f the tag su r f a c e −> d i s t ance between l i n e s)

r i g h t t a g p a r a l l e l d i s t = [0 , 1 , 2 , 3 , 3 . 5] ;%f t (p a r a l l e l to the normal
v e c t o r o f the tag su r f a c e −> d i s t ance between l i n e s)

l e f t t a g r s s i = [−55 ,−59 ,−63 ,−69]; %RSSi (dBm)
r i g h t t a g r s s i = [−53 ,−55 ,−57 ,−64 ,−69]; %RSSi (dBm)

% Distance equat ion
%Returns C, the s t r a i g h t l i n e d i s t ance o f a r i g h t t r i a n g l e
c a l c d i s t = @(a , b) (sqrt ((a . ˆ 2) + (b . ˆ 2))) ;

%Ca l cu l a t e d i r e c t d i s t ance to each tag
l e f t t a g d i s t = c a l c d i s t (l e f t t a g l a t e r a l d i s t , l e f t t a g p a r a l l e l d i s t)

;
r i g h t t a g d i s t = c a l c d i s t (r i g h t t a g l a t e r a l d i s t ,

r i g h t t a g p a r a l l e l d i s t) ;

%% HEAD ON SECTION
head on d i s t = [1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1] ; %Distance (f t)
head on r s s i = [−50 ,−55 ,−56.5 ,−60.5 ,−61.5 ,−67 ,−68.5 ,−69 ,−70 ,−70.5 ,−75];

%RSSi (dBm)

106

%Try po ly f i t
r s s i c o o r d s = [head on r s s i , l e f t t a g r s s i , r i g h t t a g r s s i] ;
d i s t c o o r d s = [head on d i s t , l e f t t a g d i s t , r i g h t t a g d i s t] ;
p = polyf it (r s s i c o o r d s , d i s t c oo rd s , 3) ;
x1 = linspace (−75 ,−45) ;
y1 = polyval (p , x1) ;
c u r v e f i t o b j e c t = f i t (r s s i c o o r d s ’ , d i s t c oo rd s ’ , ’ poly3 ’) ;

%% P lo t t i n g
f igure

hold on
grid minor
t i t l e (’ Distance Independent ’)
plot (l e f t t a g d i s t , l e f t t a g r s s i)
plot (r i g h t t a g d i s t , r i g h t t a g r s s i)
plot (head on d i s t , h e ad on r s s i)
hold o f f

f igure

hold on
grid minor
t i t l e (’ RSSi Independent ’)
plot (l e f t t a g r s s i , l e f t t a g d i s t)
plot (r i g h t t a g r s s i , r i g h t t a g d i s t)
plot (head on r s s i , h ead on d i s t)
hold o f f

f igure

hold on
grid minor
s c a t t e r (r s s i c o o r d s , d i s t c oo rd s , ’ dk ’ , ’ LineWidth ’ , 2)
plot (x1 , y1 , ’ LineWidth ’ , 2)
xlabel (’ RSSi (dBm) ’)
ylabel (’ Distance (f t) ’)
set (gca , ’ FontSize ’ , 24)
x l = [−76 ,−46];
y l = [0 , 1 2] ;
xl im (x l) ;
yl im (y l) ;
xt = 0 .15 ∗ (x l (2)−x l (1)) + x l (1) ;
yt = 0 .95 ∗ (y l (2)−y l (1)) + y l (1) ;
capt ion = sprintf (’ y = %f xˆ3 + %f xˆ2 + %f x + %f ’ , p (1) , p (2) , p (3) ,

p (4)) ;
text (xt , yt , capt ion , ’ FontSize ’ , 15 , ’ Color ’ , ’ r ’ , ’ FontWeight ’ , ’ bold

’) ;

107

hold o f f

%% Save Look up Table
save (’ edgar lut rhcp1 30dbm .mat ’ , ’ c u r v e f i t o b j e c t ’) %Saves the

po lynomia l

Listing C.5: Script that takes in a the csv file that contains the tag IDs, the zone they belong

to, and their coordinates, and outputs a file that the post-processing code can interpret. This

output file has each zone listed with all of the tags associated in it along with the type of

zone it is and legacy information on what the heading angles are into and out of the zone.

The heading angles are filled with NaNs as they are taken care of with the zone connection

file.

%This Program Takes in a ’ t a g i n f o . csv ’ f i l e and genera t e s the
%’ zone in f o . csv ’ f i l e

%NOTE: ’ t a g i n f o . csv ’ must have the t a g s in groups wi th each other , do
not

%s c a t t e r around the l i s t ! ! (i . e . 1 ; 1 ; 1 ; 2 ; 2 ; 2 ; 2 ; 2 ; 2 ; not
1 ; 2 ; 2 ; 1 ; 1 ; 2 ; 2 ; 2 ; 1 ; 2 ; 2)

%ALSO KEEP THEM IN ZONE NUMERICAL ORDER! !
%(i . e) 1 ; 1 ; 2 ; 2 ; 2 ; 3 ; 3 ; 4 NOT 2 ; 1 ; 3 ; 4 ; 3 ; 2 ; 2 ; 1

%% /////////////INPUTS//////////////
l o c a t i o n = ’ /Users / r j /Documents/RFID project / edga r m in e r e su l t s / code/ ’ ;

%WINDOWS
f i l e n ame tag s = ’ t a g i n f o . csv ’ ;
output f i l ename = ’ z on e i n f o . csv ’ ;

%In numerical zone (i . e . zone # 1 ,2 ,3) order , en ter the zone type s in
matrix format

%’ s ’ f o r s t r a i g h t s ec t i on , ’u ’ f o r undef ined s e c t i on
zone types = [’u ’ ; ’ u ’ ; ’ u ’ ; ’ u ’ ; ’ u ’ ; ’ u ’ ; ’ u ’ ; ’ u ’ ; ’ u ’ ; ’ u ’ ; ’ u ’] ;
%The f z t (forward zone t r a n s i t i o n s) headings and r z t (r e v e r s e zone

t r a n s i t i o n s) headings are l e gacy implementat ion to the code and are
used in o l d e r data s e t s where the zone connect ion diagram i s
una va i l a b l e . So th e s e arrays are kep t but are f i l l e d wi th NaNs as
they are not needed .

z on e f z t h e ad i ng s = [NaN;NaN;NaN;NaN;NaN;NaN;NaN;NaN;NaN;NaN;NaN] ; %
Array o f forward zone t r a n s i t i o n headings i f s t r a i g h t s e c t i on ! I f
not , then put NaN

zone r z t h ead ing s = [NaN;NaN;NaN;NaN;NaN;NaN;NaN;NaN;NaN;NaN;NaN] ; %
Array o f r e v e r s e zone t r a n s i t i o n headings i f s t r a i g h t s e c t i on ! I f

108

not , then put NaN
%Note : i f o ther l o g i c i s added to t r e a t var ious zones d i f f e r e n t l y , add

i t
%above wi th i t s own s p e c i a l charac t e r

%% //////////////EXECUTION CODE///////
%ASSUMING THE ORTHOPEDIC RFID TAGS
%In 2D matrix format , l i s t the l a s t t h r ee d i g i t s o f the tag i d e n t i f i e r
%Rows are tag IDs ; columns are the zones in numerical order
%Blank e n t r i e s must have ’NaN’ put in them
opts = detectImportOptions ([l o c a t i o n f i l e n ame tag s]) ;
t a g i n f o = readtab l e ([l o c a t i o n f i l e name tag s] , opts) ;

%Convert t a b l e to array
t a g i n f o a r r a y = tab l e2a r ray (t a g i n f o) ;
%Get the tag i n f o array in to mu l t i p l e arrays corresponding to the r i g h t
%zones
unique zones = 0 ; %In i t
for index = 1 : 1 : s ize (t a g i n f o a r r ay , 1) %Loop through the number o f t a g s

i f t a g i n f o a r r a y (index , 1) == unique zones %I f the tag be l ong s to a
zone a l r eady seen
%Add tag i n f o to the l i s t o f the zone i t b e l ong s to
z o n e c e l l a r r a y { unique zones } = cat (1 , z o n e c e l l a r r a y {

unique zones } , t a g i n f o a r r a y (index , :)) ;
e l s e i f t a g i n f o a r r a y (index , 1) ˜= unique zones %I f tag does not

be long to a zone a l r eady seen
%Create a new zone in the s t r u c t when encountered in tag l i s t
unique zones = unique zones + 1 ; %Increae the unique zone

counter
z o n e c e l l a r r a y { unique zones } = tag i n f o a r r a y (index , :) ;

end

end %End of f o r loop

%Number o f zones :
num zones = s ize (z o n e c e l l a r r a y , 2) ;
%Make sure t ha t a l l o f the user inpu t s matches the unique zone number .
%I f i t doesn ’ t , q u i t program with error
i f (num zones ˜= s ize (zone types , 1)) | | (num zones ˜= s ize (

z one f z t head ing s , 1)) | | (num zones ˜= s ize (zone r z t head ing s , 1))
disp (’ Zone number does not a l i g n with the s p e c i f i e d input matrix

s i z e s ! ! ’)
return

end

109

%Maximum number o f t a g s t ha t cou ld be in any zone (i . e unde f ined zones
may

%have 4−9 tag s)
max num tags = 1 ; %I n i t i a l i z e v a r i a b l e
for index = 1 : 1 : num zones %Loop through each zone

%Find the number o f t a g s f o r the zone
num tags = s ize (z o n e c e l l a r r a y {1 , index } , 1) ;
i f (num tags > max num tags) %I f the zone has a g r ea t e r number o f

t a g s than the h i g h e s t number seen so f a r
max num tags = num tags ; %Set the h i g h e s t recorded tag count as

the max num tags
end

end %End of f o r loop

%F i r s t l i n e o f CSV f i l e
f i r s t l i n e s t r i n g = ’ zone number , ’ ;
for index = 1 : 1 : max num tags

temp st r ing = [’ tag ’ ,num2str(index) , ’ ident , tag ’ ,num2str(index) , ’ x
, tag ’ ,num2str(index) , ’ y , ’] ;

f i r s t l i n e s t r i n g = [f i r s t l i n e s t r i n g , t emp st r ing] ;
end %End of f o r loop
f i r s t l i n e s t r i n g = [f i r s t l i n e s t r i n g , ’ f z head ing , rz heading , type , ’] ;

%Compose the body o f the s t r i n g array
c e n t e r s t r i n g a r r a y = {} ; %I n i t i a l i z e array
for zone index = 1 : 1 : num zones %loop across number o f zones

c e n t e r s t r i n g a r r a y { zone index } (1 , :) = [num2str(zone index) , ’ , ’] ;
for tag index = 1 : 1 : max num tags %loop across max number o f t a g s

i f (tag index <= s ize (z o n e c e l l a r r a y {1 , zone index } , 1)) %I f the
number o f t a g s in the zone are g r ea t e r than the tag index
%F i l l wi th i n f o t ha t we know
temp ident = num2str(z o n e c e l l a r r a y { zone index }(tag index

, 2)) ;
temp x = num2str(z o n e c e l l a r r a y { zone index }(tag index , 3)) ;
temp y = num2str(z o n e c e l l a r r a y { zone index }(tag index , 4)) ;
t emp st r ing = [temp ident , ’ , ’ , temp x , ’ , ’ , temp y , ’ , ’] ;

else %Extra spaces (i f max num tags i s g r ea t e r than the t ag s
t ha t are l i s t e d f o r t ha t zone) are f i l l e d wi th NaN’ s
t emp st r ing = [’NaN, ’ , ’NaN, ’ , ’NaN, ’] ; %F i l l zones wi th on ly

a few tag s wi th NaNs t i l l t hey match the l e n g t h o f the
l a r g e r zone tag number

end

%Concatenate the s t r i n g to the array
c e n t e r s t r i n g a r r a y { zone index } = cat (2 , c e n t e r s t r i n g a r r a y {

zone index } (1 , :) , t emp st r ing) ;
end %End of tag loop

110

%Add ending charac t e r s
t emp st r ing = [num2str(z on e f z t h e ad i ng s (zone index)) , ’ , ’ ,num2str(

z one r z t h ead ing s (zone index)) , ’ , ’ , zone types (zone index) , ’ , ’] ;
c e n t e r s t r i n g a r r a y { zone index } = cat (2 , c e n t e r s t r i n g a r r a y {

zone index } (1 , :) , t emp st r ing) ;
end %End of zone loop

%Write to CSV f i l e (Use c s vwr i t e command i f i s s u e s a r i s e)
f i d = fopen ([l o ca t i on , output f i l ename] , ’wt ’) ; %Open f i l e
fpr intf (f i d , [f i r s t l i n e s t r i n g , ’ \n ’]) ; %Write f i r s t l i n e .
for index = 1 : 1 : num zones %F i l l body

%f p r i n t f (f i d ,) ; %Write new l ine , ’\ ’ i s the new l i n e charac t e r
fpr intf (f i d , [c e n t e r s t r i n g a r r a y {1 , index } (1 , :) , ’ \n ’]) ;

end

fc lose (f i d) ;

%% /////////////FUNCTIONS/////////////
function [f u l l a r r a y] = f i l l o u t a r r a y (tag array , maximum number tags)
% @br ie f F i l l s out the r e s t o f the array wi th the f u l l s i z e o f tag
% numbers wi th
% @param [in] t a g a r ray − ac t ua l tag ID ’ s
% @param [in] maximum number tags − Larges t number o f t a g s

encountered in
% any zone
% @param [out] f u l l a r r a y − 1xN array where N i s the maximum number o f
% tag s
% @todo
f u l l a r r a y = zeros (maximum number tags , 1) ;
t a g a r r a y s i z e = length (t ag a r ray) ;

for index = 1 : 1 : maximum number tags %Loop through the number o f
t a g s
i f (index <= t a g a r r a y s i z e)

f u l l a r r a y (index , 1) = tag a r ray (index) ;
e l s e i f (index > t a g a r r a y s i z e) %F i l l the remainder o f the array

wi th NaN
f u l l a r r a y (index , 1) = NaN;

end

end

end %end o f f unc t i on

Listing C.6: Code to assist the user in creating the zone connection matrix that is used by

the post-processing code.

%% Struc t genera t ion
%Need to output an NxN matrix o f s t r u c t s where i , j shows the r e l a t i o n
%between the curren t zone , i , to j , the zone the user i s t r a v e l i n g from

111

%f z t / f z : forward zone t r a n s i t i o n
%r z t / rz : Reverse zone t r a n s i t i o n
%[z one cu r r en t l y i n , zone coming from]

%SHOULDNT NEED THE DIAGONAL (i = j)
%I n i t i a l Condit ion
z o n e r e l a t i o n s t r u c t (1 , 1) . f z t h ead i ng = 90 ;
z o n e r e l a t i o n s t r u c t (1 , 1) . xy f z = [0 , 2 1] ;

%Zone 1 to 2
z o n e r e l a t i o n s t r u c t (1 , 2) . f z t h ead i ng = 90 ;
z o n e r e l a t i o n s t r u c t (1 , 2) . xy f z = [0 , 7 8] ;

%Zone 2 to 1
z o n e r e l a t i o n s t r u c t (2 , 1) . f z t h ead i ng = 270 ;
z o n e r e l a t i o n s t r u c t (2 , 1) . xy f z = [0 , 4 1] ;

%Zone 2 to 3
z o n e r e l a t i o n s t r u c t (2 , 3) . f z t h ead i ng = 90 ;
z o n e r e l a t i o n s t r u c t (2 , 3) . xy f z = [0 , 1 2 4 . 5] ;

%Zone 3 to 2
z o n e r e l a t i o n s t r u c t (3 , 2) . f z t h ead i ng = 270 ;
z o n e r e l a t i o n s t r u c t (3 , 2) . xy f z = [0 , 9 5 . 5] ;

%Zone 3 to 4
z o n e r e l a t i o n s t r u c t (3 , 4) . f z t h ead i ng = 180 ;
z o n e r e l a t i o n s t r u c t (3 , 4) . xy f z = [−12 . 5 , 1 4 8 . 5] ;

%Zone 4 to 3
z o n e r e l a t i o n s t r u c t (4 , 3) . f z t h ead i ng = 0 ;
z o n e r e l a t i o n s t r u c t (4 , 3) . xy f z = [−38 , 148 . 5] ;

%Zone 4 to 5
z o n e r e l a t i o n s t r u c t (4 , 5) . f z t h ead i ng = 108 . 8 4 ;
z o n e r e l a t i o n s t r u c t (4 , 5) . xy f z = [−72 ,206] ;

%Zone 5 to 4
z o n e r e l a t i o n s t r u c t (5 , 4) . f z t h ead i ng = 288 . 8 4 ;
z o n e r e l a t i o n s t r u c t (5 , 4) . xy f z = [−55 ,164] ;

%Zone 5 to 6
z o n e r e l a t i o n s t r u c t (5 , 6) . f z t h ead i ng = 61 . 7 3 ;
z o n e r e l a t i o n s t r u c t (5 , 6) . xy f z = [−84 ,267] ;

%Zone 6 to 5
z o n e r e l a t i o n s t r u c t (6 , 5) . f z t h ead i ng = 241 . 7 3 ;

112

z o n e r e l a t i o n s t r u c t (6 , 5) . xy f z = [−76 ,232] ;

%Zone 6 to 7
z o n e r e l a t i o n s t r u c t (6 , 7) . f z t h ead i ng = 61 . 7 3 ;
z o n e r e l a t i o n s t r u c t (6 , 7) . xy f z = [−39 ,318] ;

%Zone 7 to 6
z o n e r e l a t i o n s t r u c t (7 , 6) . f z t h ead i ng = 241 . 7 3 ;
z o n e r e l a t i o n s t r u c t (7 , 6) . xy f z = [−82 ,283] ;

%Zone 7 to 8
z o n e r e l a t i o n s t r u c t (7 , 8) . f z t h ead i ng = 0 ;
z o n e r e l a t i o n s t r u c t (7 , 8) . xy f z = [−11 . 5 , 328] ;

%Zone 8 to 7
z o n e r e l a t i o n s t r u c t (8 , 7) . f z t h ead i ng = 180 ;
z o n e r e l a t i o n s t r u c t (8 , 7) . xy f z = [−34 . 5 , 328] ;

%Zone 8 to 9
z o n e r e l a t i o n s t r u c t (8 , 9) . f z t h ead i ng = 0 ;
z o n e r e l a t i o n s t r u c t (8 , 9) . xy f z = [6 9 , 3 3 8] ;

%Zone 9 to 8
z o n e r e l a t i o n s t r u c t (9 , 8) . f z t h ead i ng = 180 ;
z o n e r e l a t i o n s t r u c t (9 , 8) . xy f z = [2 4 . 5 , 3 3 8] ;

%Zone 8 to 10
z o n e r e l a t i o n s t r u c t (8 , 10) . f z t h ead i ng = 270 ;
z o n e r e l a t i o n s t r u c t (8 , 10) . xy f z = [0 , 2 8 0] ;

%Zone 10 to 8
z o n e r e l a t i o n s t r u c t (10 , 8) . f z t h ead i ng = 90 ;
z o n e r e l a t i o n s t r u c t (10 , 8) . xy f z = [0 , 3 1 3 . 5] ;

%Zone 10 to 11
z o n e r e l a t i o n s t r u c t (10 ,11) . f z t h ead i ng = 270 ;
z o n e r e l a t i o n s t r u c t (10 ,11) . xy f z = [0 , 2 0 5 . 5] ;

%Zone 11 to 10
z o n e r e l a t i o n s t r u c t (11 ,10) . f z t h ead i ng = 90 ;
z o n e r e l a t i o n s t r u c t (11 ,10) . xy f z = [0 , 2 5 7 . 5] ;

%Zone 11 to 3
z o n e r e l a t i o n s t r u c t (11 , 3) . f z t h ead i ng = 270 ;
z o n e r e l a t i o n s t r u c t (11 , 3) . xy f z = [0 , 1 5 5 . 5] ;

%Zone 3 to 11

113

z o n e r e l a t i o n s t r u c t (3 , 11) . f z t h ead i ng = 90 ;
z o n e r e l a t i o n s t r u c t (3 , 11) . xy f z = [0 , 2 0 5 . 5] ;

%Loop through a l l p o s s i b l e zone combinat ions and determine i f they are
%v a l i d connec t ions or not .
for i = 1 : 1 : s ize (z o n e r e l a t i o n s t r u c t , 1)

for j = 1 : 1 : s ize (z o n e r e l a t i o n s t r u c t , 2)
i f isempty (z o n e r e l a t i o n s t r u c t (i , j) . f z t h ead i ng)

z o n e r e l a t i o n s t r u c t (i , j) . v a l i d = ’n ’ ;
else

z o n e r e l a t i o n s t r u c t (i , j) . v a l i d = ’y ’ ;
end

end

end

%% Fi l e Output
save (’ z o n e r e l a t i o n .mat ’ , ’ z o n e r e l a t i o n s t r u c t ’)

Listing C.7: Code to assist the user in generating the line map approximation.

%% Line genera t ion
% Each po in t w i l l be be e i t h e r a s t a r t i n g p o s i t i o n or end po s i t i o n o f a
% l i n e segment
% The array a i s Nx4 where N i s the number o f l i n e segments and 4 are

the
% x1 , y1 , x2 , y2 coord inates , r e s p e c t i v e l y . The s t a r t o f the l i n e segment

i s
% coord ina te : (x1 , y1) and the end o f the l i n e segment i s coord ina te (

x2 , y2)

%Line 1
l i ne map ar ray (1 , :) = [0 , 0 , 0 , 4 0 0] ;

%Line 2
l i ne map ar ray (2 , :) = [0 , 148 . 5 , −80 , 148 . 5] ;

%Line 3
l i ne map ar ray (3 , :) = [−51 ,148 .5 , −75 ,219 .5] ;

%Line 4
l i ne map ar ray (4 , :) = [−75 ,219 .5 , −77 .5 ,260] ;

%Line 5

114

l i ne map ar ray (5 , :) = [−77.5 ,260 , −41 ,328] ;

%Line 6
l i ne map ar ray (6 , :) = [−80 ,328 ,0 ,328] ;

%Line 7
l i ne map ar ray (7 , :) = [0 , 3 3 8 , 1 0 0 , 3 3 8] ;

%% Plot the l i n e s
f igure

hold on
grid minor
set (gca , ’ FontSize ’ , 20)
for index = 1 : 1 : s ize (l ine map array , 1)

plot (l ine map ar ray (index , [1 , 3]) , l i ne map ar ray (index , [2 , 4]) , ’ k ’ , ’
LineWidth ’ , 2)

end

xlabel (’X coord inate (f t) ’)
ylabel (’Y coord inate (f t) ’)
hold o f f

%% Fi l e Output
save (’ zone map .mat ’ , ’ l i ne map ar ray ’)

Listing C.8: Code to interleave the RFID data files output from the two readers. Put both

the reader files in the same folder level as this code and just run this script.

format long
%Code t ha t t a k e s the two RFID data s e t s and i n t e r l e a v e s them based on

time .
%Uses a wh i l e loop to loop across the combined the f i l e s i z e number o f
%ind i c e s . Each loop index , i t determines i f f i l e 1 has an e a r l i e r time

than
%f i l e 2 , or l a t e r , or the same . Then i t a s s i gn s the e a r l i e r time and
%increments the f i l e index t ha t was the e a r l i e r one .
%% User Inputs
b a s e f i l e p a t h = ’ ’ ;
r f i d data 1 name = ’ r eade r0 out . txt ’ ;
r f i d data 2 name = ’ r eade r1 out . txt ’ ;
output r f id data name = ’ r f id combined data . txt ’ ;

%% Fi l e Input
[r f i d d a t a 1] = e x t r a c t r f i d d a t a f a c t o r y (b a s e f i l e p a t h , r f i d data 1 name

) ;

115

[r f i d d a t a 2] = e x t r a c t r f i d d a t a f a c t o r y (b a s e f i l e p a t h , r f i d data 2 name
) ;

%% In t e r l e a v i n g
%Create i n d i c e s
f i n a l i n d i c e s = length (r f i d d a t a 1 . r eade r t ime) + length (r f i d d a t a 2 .

r eade r t ime) ;
data index 1 = 1 ; %Index through f i l e 1
data index 2 = 1 ; %Index through f i l e 2
index = 1 ;
while index <= f i n a l i n d i c e s

temp1 time = r f i d d a t a 1 . r eade r t ime (data index 1) ;
temp2 time = r f i d d a t a 2 . r eade r t ime (data index 2) ;

i f (temp2 time > temp1 time) %Time 2 i s g r ea t e r than time 1
%Bui ld up s t r i n g
t emp st r ing = [’b ’ , char (39) , ’ 350000000000000000000 ’ , . . .

num2str(r f i d d a t a 1 . t a g i d en t (data index 1)) , char
(39) , ’ , ’ , . . .

num2str(r f i d d a t a 1 . phase (data index 1)) , ’ , ’ , . . .
num2str(r f i d d a t a 1 . r s s i (data index 1)) , ’ , ’ , . . .
num2str(r f i d d a t a 1 . antenna (data index 1)) , ’ , ’

, . . .
num2str(r f i d d a t a 1 . r eade r t ime (data index 1) , ’

%.16 f ’)] ;
o u t p u t s t r i n g l i n e { index } = temp st r ing ; %Pass s t r i n g to output
data index 1 = data index 1 + 1 ; %Increase data f i l e index

%Check to make sure hat we do not exceed the matrix s i z e
i f (data index 1 > length (r f i d d a t a 1 . r eade r t ime))

data index 1 = length (r f i d d a t a 1 . r eade r t ime) ; %Fix the
index to max

end

index = index + 1 ; %Increase wh i l e loop index

e l s e i f (temp2 time < temp1 time) %Time 1 i s g r ea t e r than time 2
%Bui ld up s t r i n g
t emp st r ing = [’b ’ , char (39) , ’ 350000000000000000000 ’ , . . .

num2str(r f i d d a t a 2 . t a g i d en t (data index 2)) , char
(39) , ’ , ’ , . . .

num2str(r f i d d a t a 2 . phase (data index 2)) , ’ , ’ , . . .
num2str(r f i d d a t a 2 . r s s i (data index 2)) , ’ , ’ , . . .
num2str(r f i d d a t a 2 . antenna (data index 2)) , ’ , ’

, . . .
num2str(r f i d d a t a 2 . r eade r t ime (data index 2) , ’

%.16 f ’)] ;

116

o u t p u t s t r i n g l i n e { index } = temp st r ing ; %Pass s t r i n g to output
data index 2 = data index 2 + 1 ; %Increase data f i l e index

%Check to make sure t ha t we do not exceed the matrix s i z e
i f (data index 2 > length (r f i d d a t a 2 . r eade r t ime))

data index 2 = length (r f i d d a t a 2 . r eade r t ime) ; %Fix the
index to max

end

index = index + 1 ; %Increase wh i l e loop index

else %CONDITION FOR IF BOTH TIMES ARE THE EXACT SAME
%Enter l i n e f o r the 1 s t Reader
%Bui ld up s t r i n g
t emp st r ing = [’b ’ , char (39) , ’ 350000000000000000000 ’ , . . .

num2str(r f i d d a t a 1 . t a g i d en t (data index 1)) , char
(39) , ’ , ’ , . . .

num2str(r f i d d a t a 1 . phase (data index 1)) , ’ , ’ , . . .
num2str(r f i d d a t a 1 . r s s i (data index 1)) , ’ , ’ , . . .
num2str(r f i d d a t a 1 . antenna (data index 1)) , ’ , ’

, . . .
num2str(r f i d d a t a 1 . r eade r t ime (data index 1) , ’

%.16 f ’)] ;
o u t p u t s t r i n g l i n e { index } = temp st r ing ; %Pass s t r i n g to output
data index 1 = data index 1 + 1 ; %Increase data f i l e index
index = index + 1 ; %Increase wh i l e loop index

%Enter l i n e f o r the 2nd Reader
%Bui ld up s t r i n g
t emp st r ing = [’b ’ , char (39) , ’ 350000000000000000000 ’ , . . .

num2str(r f i d d a t a 2 . t a g i d en t (data index 2)) , char
(39) , ’ , ’ , . . .

num2str(r f i d d a t a 2 . phase (data index 2)) , ’ , ’ , . . .
num2str(r f i d d a t a 2 . r s s i (data index 2)) , ’ , ’ , . . .
num2str(r f i d d a t a 2 . antenna (data index 2)) , ’ , ’

, . . .
num2str(r f i d d a t a 2 . r eade r t ime (data index 2) , ’

%.16 f ’)] ;
o u t p u t s t r i n g l i n e { index } = temp st r ing ; %Pass s t r i n g to output
data index 2 = data index 2 + 1 ; %Increase data f i l e index
index = index + 1 ; %Increase wh i l e loop index

end %End of i f e l s e s ta tement
clear temp1 time temp2 time

end %End of wh i l e loop

%% Fi l e Save
f i d = fopen (output r f id data name , ’w ’) ;

117

for index = 1 : 1 : s ize (o u t pu t s t r i n g l i n e , 2)
fpr intf (f i d , [o u t p u t s t r i n g l i n e { index } , ’ \n ’]) ;

end

fc lose (f i d) ;

%% Functions

function [r f i d d a t a] = e x t r a c t r f i d d a t a f a c t o r y (l o ca t i on , f i l e n ame r f i d
)
% @br ie f Function e x t r a c t s the data from the RFID . t x t f i l e s
% @param [in] l o c a t i o n − Location f o r where the r f i d data i s s t o r ed
% @param [in] f i l e n ame r f i d − Filename o f the r f i d data
% @param [out] r f i d d a t a − S t ruc tu re t ha t con ta ins a l l o f the RFID

data
% @todo Create a ve r s i on o f t h i s f unc t i on t ha t works wi th the

custom tag s

r f i d d a t a s e t = readtab l e ([l o c a t i o n f i l e n ame r f i d]) ;

t ag ident raw = tab l e2a r ray (r f i d d a t a s e t (: , 1)) ;

%Remove the exce s s charac t e r s − HARDCODED BASED ON THE TAGS USED
FOR THIS

%EXPERIMENT (the end−5 and end−1 component)
for index = 1 : 1 : s ize (tag ident raw , 1)

temp = (regexprep (tag ident raw { index , 1} , ’ b ’ , ’ ’)) ;
t a g i d en t (index , 1) = st r2doub l e (temp(end−5:end−1)) ;

end

r f i d d a t a . t a g i d en t = tag i d en t ;
r f i d d a t a . r eade r t ime = tab l e2a r ray (r f i d d a t a s e t (: , 5)) ; %seconds
r f i d d a t a . antenna = tab l e2a r ray (r f i d d a t a s e t (: , 4)) ;
r f i d d a t a . r s s i = tab l e2a r ray (r f i d d a t a s e t (: , 3)) ; %dB
r f i d d a t a . phase = tab l e2a r ray (r f i d d a t a s e t (: , 2)) ; %Degrees

end %End of f unc t i on

Listing C.9: Function that takes in the zone information file, which was generated in the pre-

processing step, and the tag ID data and outputs the indices of the RFID data that belong

to each zone. This code also outputs the column header names from the zone information

file so later functions can directly call from the table without needing logic on how many

tags are in each zone.

118

function [r f i d z on e a r r ay , max num tags , var name x , var name y ,
var name ident] = c a t e g o r i z e r f i d d a t a n t a g s (z on e i n f o t ab l e ,
t a g i d e n t i f i e r d a t a)
% @br ie f Function t ha t determines which o f the RFID va lu e s were in

which
% zone . Can opera te anywhere from 1 to n tag s .
% @param [in] z o n e i n f o t a b l e − Tabular data from the zone

in format ion csv f i l e
% @param [in] t a g i d e n t i f i e r d a t a − Array o f tag i d e n t i f i e r s

ob ta ined from the
% RFID data
% @param [out] r f i d z on e a r r a y − Array output t ha t i s the same

l en g t h as the RFID
% data po in t s t h a t determines which RFID va lu e s were in which zone
% @param [out] max num tags − S ing l e number t ha t s t a t e s what the

h i g h e s t
% number o f t a g s t ha t were a t t r i b u t e d to a s i n g l e zone were
% @param [out] var name x − A l i s t o f which o f the v a r i a b l e names
% corresponded d i r e c t l y to the tag ’ x ’ .
% @param [out] var name y − A l i s t o f which o f the v a r i a b l e names
% corresponded d i r e c t l y to the tag ’ y ’ .
% @param [out] var name ident − A l i s t o f which o f the v a r i a b l e

names
% corresponded d i r e c t l y to the tag ’ i d en t ’ .
% @todo

%Pre−a l l o c a t e array s i z e
r f i d z o n e a r r a y = zeros (length (t a g i d e n t i f i e r d a t a) ,1) ;

%Grab a l l o f the v a r i a b l e names from the zone t a b l e
tab le var names = z on e i n f o t a b l e . P rope r t i e s . VariableNames ;

%In the zone t a b l e , search f o r which columns ones end in i d en t
i = 1 ; %In i t sub−index
for index = 1 : 1 : s ize (table var names , 2)

t emp s t r s ea r ch = s t r f i n d (tab le var names {1 , index } , ’ i d en t ’) ;

i f (isempty (t emp s t r s ea r ch))
%Do Nothing

else

%Found a column (or v a r i a b l e name) t ha t ends in i d en t
i ndex r e co rd (i) = index ; %Record index
var name record { i } = table var names {1 , index } ;
i = i + 1 ; %Advance through the columns

end

end

119

%Output i d en t var names
var name ident = var name record ;

%In the zone t a b l e , search f o r which ones end in x
i = 1 ; %Reset i t e r a t o r
for index = 1 : 1 : s ize (table var names , 2)

t emp s t r s ea r ch = s t r f i n d (tab le var names {1 , index } , ’ x ’) ;

i f (isempty (t emp s t r s ea r ch))
%Do Nothing

else

%Found a column (or v a r i a b l e name) t ha t ends in i d en t
var name x{ i } = table var names {1 , index } ;
i = i + 1 ;

end

end

%In the zone t a b l e , search f o r which ones end in y
i = 1 ; %Reset i t e r a t o r
for index = 1 : 1 : s ize (table var names , 2)

t emp s t r s ea r ch = s t r f i n d (tab le var names {1 , index } , ’ y ’) ;

i f (isempty (t emp s t r s ea r ch))
%Do Nothing

else

%Found a column (or v a r i a b l e name) t ha t ends in i d en t
var name y{ i } = table var names {1 , index } ;
i = i + 1 ;

end

end

%loop through RFID va l u e s
for index = 1 : 1 : length (t a g i d e n t i f i e r d a t a)

temp = t a g i d e n t i f i e r d a t a (index) ;

%loop through zones − i f r f i d zone i d e n t i f i e r matches any o f the
%three cond i t i on s then s e t the r f i d zone array to the zone

number
for zone index = 1 : 1 : s ize (z on e i n f o t ab l e , 1)

%Check a l l o f the v a r i a b l e s names , found in the search
s t r i n g

%fo r i f the data matches up wi th i d en t

120

po s s i b l e t a g a r r a y = tab l e2a r ray (z o n e i n f o t a b l e (zone index
, var name record)) ;

%Sub t rac t temp tag number from the p o s s i b l e tag array
s e a r ch a r r ay = po s s i b l e t a g a r r a y − temp ;
%Search f o r a zero (an array t ha t conta ins a zero means

exac t
%match)
cond array = (s ea r ch a r r ay == 0) ;

%Condi t iona l so t ha t i f any va l u e s in the array are 1 (aka
%match) then the i f cond i t i on execu t e s s u c c e s s f u l l y .
i f (any(cond array))

r f i d z o n e a r r a y (index , 1) = z on e i n f o t a b l e . zone number (
zone index) ;

end

end

end

max num tags = s ize (p o s s i b l e t a g a r r a y , 2) ; %This on ly works i f NaNs
are

%used to f i l l t he array
wi th

%zones wi th fewer number
o f

%tag s . Use the
%f i l e g e n e r a t o r s c r i p t ! !

end %End of f unc t i on

Listing C.10: Function that takes in the IMU data, the RFID time data, and the RFID zone

ID array and outputs the indices in the IMU data that demarcate a transition to a different

zone. This function also outputs the times at which this occurs as well as the indices in the

RFID data that a transition occurred.

function [imu zone ind i ce s , imu zone t imes , zone prog r e s s i on ,
r f i d z o n e t r i n d e x] = ca t ego r i z e imu data (imu t , r f i d t ,
r f i d z o n e a r r a y)
% @br ie f Core component o f the ZCA. Takes in the RFID zone data and

the
% IMU data and organ i z e s the IMU data in to zones
% @param [in] imu t − Time array o f the IMU data
% @param [in] r f i d t − Time array o f the RFID reader data
% @param [in] r f i d z on e a r r a y − Array o f which zone the RFID data

corresponds to
% @param [out] imu zone ind i ce s − Zone t r a n s i t i o n s in IMU ind i c e s

121

% @param [out] imu zone t imes − Zone t r a n s i t i o n s in IMU time
% @param [out] r f i d z o n e t r i n d e x − RFID Zone t r a n s i t i o n index array
% @todo

%Find t imes where the zone t r a n s i t i o n s
l a s t z o n e = 1 ; %I n i t i a l i z e what the l a s t zone was
i = 1 ; %I n i t i a l i z e zone t r a n s i t i o n counter
z o n e t r a n s i t i o n i n d i c e s = [] ; %I n i t i a l i z e empty zone t r a n s i t i o n

index matrix
zone p rog r e s s i on (1) = r f i d z o n e a r r a y (1) ; %STARTS AT WHATEVER THE 1

s t RECORDED ZONE WAS
for index = 1 : 1 : s ize (r f i d z on e a r r ay , 1)

i f (l a s t z o n e ˜= r f i d z o n e a r r a y (index)) %I f you encountered a
new zone
z o n e t r a n s i t i o n i n d i c e s (i) = index ; %Record index t h i s

occurred at
i = i + 1 ; %Increment zone t r a n s i t i o n index
l a s t z o n e = r f i d z o n e a r r a y (index) ; %Update the l a s t zone
zone p rog r e s s i on (i) = l a s t z o n e ; %Record the zone t ha t we

are at now
end

end

z on e t r a n s i t i o n t ime s = r f i d t (z o n e t r a n s i t i o n i n d i c e s) ; %Find the
t imes t ha t we t r an s i t i o n e d to a d i f f e r e n t zone

%Output f o r when the RFID Data Trans i t i ons (i n d i c e s)
r f i d z o n e t r i n d e x = [1 , z o n e t r a n s i t i o n i n d i c e s , (s ize (

r f i d z on e a r r ay , 1) +1)] ;
%Added 1 to the maximum as the code in the main body w i l l s u b t r a c t

i t
%out . I f an error occurs then the main body l o g i c must have changed

.

%Find where t h e s e t imes correspond to i n d i c e s in the IMU data
imu zone ind i c e s = [] ;

for index = 1 : 1 : s ize (z on e t r an s i t i o n t ime s , 1)
%Only need to do minimum because you are us ing time and time

shouldn ’ t
%have l o c a l minimum tha t are not the g l o b a l minimum
[˜ , idx] = min(abs (imu t−z on e t r a n s i t i o n t ime s (index))) ;
imu zone ind i c e s (index) = idx ;

end

%Find the i n d i c e s in the IMU tha t demarcate
imu zone t imes = imu t (imu zone ind i c e s) ;

end %End of f unc t i on

122

Listing C.11: Function and helper functions used to calculate the RFID 2D position. Uses

the gauss-newton method to approximate the user’s 2D position using code from [40]. To

plot the tag readings, code was used from [41]

function [output 2d array] = r f i d 2d pos p ro to type fxn mk3 (i npu t s t ru c t
, zone s t ruc t , t ime window size , window overlap , g a u s s i t e r s , l u t v a l s ,
p l o t i n t e rmed r e s u l t s yn)

% @br ie f Uses the RFID data , l ook up t a b l e , tag in format ion to
c a l c u l a t e the user ’ s 2D

% po s i t i o n . Moves a time window across the data , d e t e c t s i f a t l e a s t
% three t a g s are read , and then invokes the gauss−newton method to
% es t imate the most l i k e l y 2D po s i t i o n f o r each window . Save the time
% stamp fo r the cen ter o f the window along wi th the 2D po s i t i o n .
% @param [in] i n p u t s t r u c t − s i z e 1x1 s t r u c t o f a l l o f the data and
% informat ion f o r the zone t ha t i s be ing processed .
% @param [in] z on e s t r u c t − s i z e 1x1 s t r u c t con ta in ing a l l o f the
% informat ion about RFID tag s and zone in format ion
% @param [in] t ime window s i ze − Window width in seconds t ha t i s s t epped
% through the data . Only va l u e s t ha t f a l l w i t h in t h i s time window

w i l l be
% used to c a l c u l a t e d i s t ance (prov ided the r e are at l e a s t t h r e e t a g s)
% @param [in] window over lap − Time in seconds t ha t the windows ove r l ap

each
% other . CANNOT BE GREATER THAN OR EQUAL TO t ime window s i ze
% @param [in] g a u s s i t e r s − Number o f i t e r a t i o n s f o r the gauss−newton

method
% @param [in] l u t v a l s − Look up t a b l e va l u e s . Input as a curve f i t

o b j e c t
% (c f i t) which conta ins the 3rd order po lynomia l c o e f f i c i e n t s and
% s t a t i s t i c a l in format ion about how we l l they f i t the l ook up t a b l e
% measurements .
% @param [in] p l o t i n t e rme d r e s u l t s y n − Switch . Put y to p l o t the RSSi

vs
% time and d i s t ance vs time p l o t s ,
% @param [out] ou tpu t 2d ar ray − %3 dimensiona l data [N x 3]
% (x coord , y coord , time) where N i s the number o f 2D po s i t i o n s

%% USER Spe c i f i e d Values & LUTs
%t ime window s i ze and window over lap cannot be equa l nor can window

over l ap
%be g r ea t e r

%Gaussian Newton i t e r a t i o n s
i t e r s = g a u s s i t e r s ;

123

%Check window s i z i n g
i f t ime window s ize <= window overlap

error (’ window overlap i s g r e a t e r than or equal to time window s i z e ’
)

end

%Only need to proces s
t emp data s t ruct = i npu t s t r u c t ;

%% CALCULATIONS
%Pu l l out l ook up t a b l e in format ion − Needs to have RSSi as the

dependent
%va lue
c o e f f a r r a y = c o e f f v a l u e s (l u t v a l s) ;
%Equation f o r po ly2 curve f i t . Added manual s h i f t .
l u t eqn = @(x) (c o e f f a r r a y (1) ∗(x . ˆ 3))+(c o e f f a r r a y (2) ∗(x . ˆ 2)) + (

c o e f f a r r a y (3) ∗x) + (c o e f f a r r a y (4)) ;

%Convert a l l RSSI va l u e s to d i s t ance us ing LUT fo r each antenna , each
tag

for tag index = 1 : 1 : s ize (t emp data s t ruct . s o r t e d r s s i , 1) %loop through
tag s
for ant index = 1 : 1 : s ize (t emp data s t ruct . s o r t e d r s s i , 2) %loop

through antennas
temp data = temp data s t ruct . s o r t e d r s s i { tag index , ant index } ;
t emp data s t ruct . c onv e r t ed d i s t { tag index , ant index } = lut eqn (

temp data) ;

%DISTANCE RAILS − CAN’T GO NEGATIVE DISTANCE AND CANT GO ABOVE
12

%f t
neg i nd i c e s = lu t eqn (temp data) < 0 ;
t emp data s t ruct . c onv e r t ed d i s t { tag index , ant index }(

n e g i nd i c e s) = 1 ; %Set nega t i v e d i s t an c e s to 1 f t
l a r g e i n d i c e s = lu t eqn (temp data) > 12 ; %Set d i s t an c e s t ha t go

beyond the l ook up t a b l e to 12 f t (the max o f the l ook up
t a b l e)

t emp data s t ruct . c onv e r t ed d i s t { tag index , ant index }(
l a r g e i n d i c e s) = 12 ;

clear temp data
end

end

124

%I f des i red , p l o t the d i s t ance ver sus time
i f (p l o t i n t e rmed r e s u l t s yn == ’y ’) | | (p l o t i n t e rmed r e s u l t s yn == ’Y

’)
p l o t r f i d d i s t r e s u l t s (temp data struct , 2) ;

end

%Determine the number o f time windows in the RFID read ings
comp l e t e t ime va l a r r ay = temp data s t ruct . c omp l e t e r f i d t ime da ta ;
num windows = f loor ((comp l e t e t ime va l a r r ay (end) −

comp l e t e t ime va l a r r ay (1)) /(t ime window size−window overlap)) ;
r f i d s t a r t t im e = comp l e t e t ime va l a r r ay (1) + (t ime window s ize /2) ;

for index = 1 : 1 : num windows
%Window Parameters
window center t ime (index) = r f i d s t a r t t im e + ((index −1) ∗

t ime window s ize) − ((index −1) ∗ window overlap) ;
window start t ime (index) = (window center t ime (index) −

t ime window s ize /2) ;
window stop time (index) = (window center t ime (index) +

t ime window s ize /2) ;

%Search through a l l antennas and tag s − b u i l d array o f r f i d
read ings

%tha t f a l l in t h i s window
for ant index = 1 : 1 : s ize (t emp data s t ruct . s o r t e d r s s i , 2)

index in window = 1 ; %Need to b u i l d a dimension o f the s t r u c t
array f o r each antenna (cou ld have separa t e LUTs f o r each
antenna)

for tag index = 1 : 1 : s ize (t emp data s t ruct . s o r t e d r s s i , 1)
temp time = temp data s t ruct . s o r t ed t ime { tag index ,

ant index } ;

%Find the i n d i c e s o f the time va l u e s t ha t f a l l w i t h in the
time

%window
i ndex ar ray = (temp time >= window start t ime (index)) & (

temp time <= window stop time (index)) ;
%Time array f o r the recorded time va l u e s i n s i d e o f the

array
w time array = temp time (index ar ray) ;
%zone num = temp da ta s t ru c t . zone ;
i f (˜ isempty (w t ime array))

%Average the time stamps in window
temp window struct (index , ant index) . time (index in window

) = mean(w t ime array) ;
%Al l i d en t s shou ld be the same (because we are l oop ing

through them)

125

%so , j u s t grab the f i r s t v a l
temp window struct (index , ant index) . id (index in window)

= temp data s t ruct . s o r t e d i d en t { tag index , ant index
} (1) ;

%Grab the minimum d i s t anc e s in window − e l im ina t e s l a r g e
d i s t anc e s from mul t i pa th

temp window struct (index , ant index) . d i s t (index in window
) = min(t emp data s t ruct . c onv e r t ed d i s t { tag index ,
ant index }(index ar ray)) ;

%Put the x , y coord ina te o f the tag in the array (x , y)
temp window struct (index , ant index) . tag xy (

index in window , 1) = tab l e2a r ray (z on e s t r u c t . xy (
tag index , 1)) ;

temp window struct (index , ant index) . tag xy (
index in window , 2) = tab l e2a r ray (z on e s t r u c t . xy (
tag index , 2)) ;

%Increment the window index
index in window = index in window + 1 ;

end

clear w time array index ar ray temp time
end %End of tag index ing loop

end %End of antenna index ing loop
end %End of Window index ing loop

%Ca l cu l a t e the 2D RFID po s i t i o n
%I f t he r e are g r ea t e r than 3 unique t ag s read between two
%antennas then proceed to c a l c u l a t e the 2d es t imate \
index = 1 ;
for window index = 1 : 1 : s ize (temp window struct , 1)

temp prep array = prep es t imate ca l c mk2 (temp window struct (
window index , :)) ;

%Check to see i f t h e r e are at l e a s t t h r e e unique t a g s
i f s ize (temp prep array , 1) >=3

%Use the median o f windowand tack on the window time to the end
o f

%the array
temp prep array (: , 5) = window center t ime (1 , window index) ;

p r e pp ed r f i d a r r a y f o r e s t ima t e { index } = temp prep array ;

%Find combinat ions

126

num uniq tags = s ize (temp prep array , 1) ;
base combo idx array = 1 : 1 : num uniq tags ;
num combins = nchoosek (num uniq tags , 3) ; %Find a l l combinat ions
combo idx array = nchoosek (base combo idx array , 3) ;

%For each combination c a l c u l a t e 2D po s i t i o n − DOES NOT
%CONTRIBUTE TOFINAL OUTPUT, LEFT HERE FOR FUTURE TESTING
for combo idx = 1 : 1 : num combins %(a l s o cou ld be s i z e (

combo idx array , 1))
r f i d 2d e s t imate combo (combo idx , :) =

r f i d l o c a l i z a t i o n f x n s p e c (temp prep array (
combo idx array (combo idx , :) , :) , i t e r s) ;

end

%Ca l cu l a t e 2D po s i t i o n us ing a l l t a g s − THIS IS THE ONE THAT IS
%OUTPUT
r f i d 2 d e s t im a t e a l l = r f i d l o c a l i z a t i o n f x n s p e c (

temp prep array , i t e r s) ;

%Create s t r u c t t h a t has a l l o f the 2D r e s u l t s
r f i d s t r u c t f o r f i n a l e s t i m a t e (index) . window idx = window index

;
r f i d s t r u c t f o r f i n a l e s t i m a t e (index) . r f id combo =

r f id 2d e s t imate combo ;
r f i d s t r u c t f o r f i n a l e s t i m a t e (index) . r f i d a l l =

r f i d 2 d e s t im a t e a l l ;
r f i d s t r u c t f o r f i n a l e s t i m a t e (index) . time stamp =

temp prep array (1 ,end) ;
r f i d s t r u c t f o r f i n a l e s t i m a t e (index) . avg combo = mean(

r f id 2d es t imate combo , 1 , ’ omitnan ’) ;

index = index + 1 ;
end %End of i f s ta tement
clear t emp prep array array combo idx array r f i d 2 d e s t im a t e a l l

r f i d 2d e s t imate combo
end

%OUTPUT 2D POSITION
i = 1 ;
for index = 1 : 1 : length (r f i d s t r u c t f o r f i n a l e s t i m a t e)

i f ˜ isnan (r f i d s t r u c t f o r f i n a l e s t i m a t e (index) . r f i d a l l) %f i l t e r
out nans
%[x coord , y coord , time]
output 2d array (i , :) = [r f i d s t r u c t f o r f i n a l e s t i m a t e (index) .

r f i d a l l , r f i d s t r u c t f o r f i n a l e s t i m a t e (index) . time stamp] ;
i = i + 1 ;

end

127

end

%Plot the r e s u l t o f the 2D po s i t i o n
f igure

hold on
set (gca , ’ FontSize ’ , 24)
t i t l e ([’RFID 2D Zone : ’ , num2str(t emp data s t ruct . zone)])
for i = 1 : 1 : length (r f i d s t r u c t f o r f i n a l e s t i m a t e)

temp x (i) = r f i d s t r u c t f o r f i n a l e s t i m a t e (i) . r f i d a l l (1 , 1) ;
temp y (i) = r f i d s t r u c t f o r f i n a l e s t i m a t e (i) . r f i d a l l (1 , 2) ;
temp time (i) = r f i d s t r u c t f o r f i n a l e s t i m a t e (i) . time stamp ;

end

plot (temp x , temp y , ’−o ’ , ’ LineWidth ’ , 2)
plot (temp x (1 , 1) , temp y (1 , 1) , ’ ∗ ’ , ’ MarkerSize ’ , 18)

tag xy ar ray = tab l e2a r ray (z on e s t r u c t . xy) ;
plot (t ag xy ar ray (: , 1) , t ag xy ar ray (: , 2) , ’ dr ’ , ’ LineWidth ’ , 3)
grid minor
hold o f f

% FUNCTION OUTPUT
%3 dimensiona l data [N x 3] (x coord , y coord , time)
output 2d array = [temp x ’ , temp y ’ , temp time ’] ;

%% FUNCTIONS
function p l o t r f i d d i s t r e s u l t s (i npu t s t ru c t , num antennas)
% @br ie f − A void func t i on t ha t p l o t s the r s s i va l u e s o f the r f i d

data .
% @param [in] i n p u t s t r u c t − Fu l l y deve loped data s t r u c t (a l l zone
% t r a n s i t i o n s)
% @param [in] num antennas − Number o f antennas used by the

a c qu i s t i on
% system
% @todo

%Each antenna w i l l have i t s own l i n e s t y l e
%Each tag w i l l have i t s own co l o r
for index = 1 : 1 : num antennas

[˜ , t emp l i n e s t y l e ,˜]= s e t z on e un i qu e c o l o r (index) ;
a n t l i n e s t y l e a r r a y (index) = s t r i n g (t emp l i n e s t y l e) ;
clear t emp l i n e s t y l e

end

%Loop across zones
for index = 1 : 1 : s ize (i npu t s t ru c t , 2)

%Give each tag a unique co l o r

128

for c o l o r i nd ex = 1 : 1 : s ize (i n pu t s t r u c t (index) . s o r t e d r s s i , 1)
[temp color ,˜ ,˜]= s e t z on e un i qu e c o l o r (c o l o r i nd ex) ;
t a g c o l o r a r r a y (co l o r i ndex , :) = temp color ;
clear temp co lor

end

%Generate new f i g u r e f o r each zone t r a n s i t i o n
f igure

hold on
set (gca , ’ FontSize ’ , 24)
grid minor
xlabel (’Time(s) ’)
ylabel (’ d i s t anc e (f t) ’)
t i t l e ([’ Zone Trans i t i on : ’ ,num2str(index) , ’ , Zone #: ’ ,num2str(

i n pu t s t r u c t (index) . zone)])
l e g end en t ry a r r ay = [] ; %Clear out the l egend entry array
for tag index = 1 : 1 : s ize (i n pu t s t r u c t (index) . s o r t e d r s s i , 1) %

Loop across t a g s
for ant index = 1 : 1 : s ize (i n pu t s t r u c t (index) . s o r t e d r s s i , 2)

%Loop across antennas
temp x = inpu t s t r u c t (index) . s o r t ed t ime { tag index ,

ant index } ;
temp y = inpu t s t r u c t (index) . c onv e r t ed d i s t { tag index ,

ant index } ;
% temp co lor = i n p u t s t r u c t (index) . c o l o r ;

t emp l i n e s t y l e = a n t l i n e s t y l e a r r a y (ant index) ;
% temp marker = s t r u c t (index) . marker ;

i f (˜ isempty (temp x) && ˜isempty (temp y))
stem(temp x , temp y , ’ Color ’ , t a g c o l o r a r r a y (

tag index , :) , ’ L ineSty l e ’ , t emp l i n e s t y l e , ’
LineWidth ’ , 2)

temp tag ident = i npu t s t r u c t (index) . s o r t e d i d en t {
tag index , ant index } (1 , 1) ;

t emp legend entry = s t r i n g ([’Tag : ’ ,num2str(
temp tag ident) , ’ , Ant : ’ ,num2str(ant index)]) ;

l e g end en t ry a r r ay = cat (2 , l e g end ent ry a r ray ,
temp legend entry) ;

clear temp x temp y temp tag ident
temp legend entry

end%End of i f e l s e
end

end

legend (l e g end en t ry a r r ay)
hold o f f

end %End of zone f o r loop
end %end o f f unc t i on

129

function [co lo r , l i n e s t y l e , marker] = s e t z on e un i qu e c o l o r (seed)
% @br ie f − Function t ha t r e tu rns an array o f unique p l o t t i n g

s e t t i n g s
% @param [in] seed − the random seed
% @param [out] c o l o r − Plo t l i n e co l o r
% @param [out] l i n e s t y l e − Plo t l i n e s t y l e f o r zone
% @param [out] marker − Plo t l i n e marker
% @todo

%Code taken from Alec Weiss ’ s (Sheekaboom) code :
%h t t p s :// g i t hu b . com/Sheekaboom/WeissTools / t r e e /master/WeissTools /

MATLAB

%Color l i s t
c o l o r s = ([0 ,50 , 135 ; 200 ,20 ,30 ; 0 ,120 ,0 ; 120 ,90 ,0

; . . .
150 ,50 , 165 ; 10 , 145 ,120 ; 0 ,0 ,0 ; 220 ,150 ,20 ; . . .
200 ,150 ,200 ; 255 ,255 ,0 ; 255 ,0 , 128 ; 150 ,150 ,0 ; . . .
0 , 255 ,255 ; 0 ,255 ,0 ; 255 ,80 ,255]/255) ;

%LineS ty l e
l i n e s t y l e s = ’ −|−−|:|−. ’ ;
markers = ’ . |+ | o | ∗ | x | s | d | ˆ | v |>|<|p | h ’ ;
l s c e l l = repmat (s t r s p l i t (l i n e s t y l e s , ’ | ’) , 1 , 4) ;
mk ce l l = s t r s p l i t (markers , ’ | ’) ;

%Output
c o l o r = c o l o r s (mod(seed −1, length (c o l o r s)) +1 , :) ;
l i n e s t y l e = l s c e l l {mod(seed −1, length (l s c e l l)) +1};
marker = mk ce l l {mod(seed −1, length (mk ce l l)) +1};

end %End of f unc t i on

function [temp array] = prep es t imate ca l c mk2 (i npu t s t r u c t)
% @br ie f − Array t ha t t a k e s in the RFID data corresponding to a

s p e c i f i c
% window and preps the output array t ha t w i l l be used by the 2d

r f i d
% po s i t i o n i n g func t i on
% @param [in] i n p u t s t r u c t − s t r u c t t h a t con ta ins a l l o f the

v a r i a b l e s f o r
% every window . S t ruc t shou ld be a 1xN array where N i s the

number o f
% antnnas

130

% @param [out] ou tpu t ar ray − a K x 4 array where i s the number o f
unique

% tag s and the 4 corresponds to (tag ID , r a d i a l d i s tance , tag x ,
tag y)
temp array = [0 , 0 , 0 , 0] ;
k = 1 ;
for i = 1 : 1 : s ize (i npu t s t ru c t , 2) %Loop across antenna number

for j = 1 : 1 : s ize (i n pu t s t r u c t (1 , i) . id , 2) %Loop across tag
i d s
check un ique tag a r ray = (temp array (: , 1) ==

inpu t s t r u c t (1 , i) . id (1 , j)) ;
i f isempty (find (check un ique tag a r ray == 1)) %

Condit ion f o r no du p l i c a t e s
%Create entry in the output array
temp array (k , 1) = i npu t s t r u c t (1 , i) . id (1 , j) ; %Tag

ID
temp array (k , 2) = i npu t s t r u c t (1 , i) . d i s t (1 , j) ; %

Radia l Distance
temp array (k , 3) = i npu t s t r u c t (1 , i) . tag xy (j , 1) ; %X
temp array (k , 4) = i npu t s t r u c t (1 , i) . tag xy (j , 2) ; %Y
k = k + 1 ;

e l s e i f sum(check un ique tag a r ray) >= 1 %I f d u p l i c a t e s
occur , g e t the minimum d i s t ance
i d x o f d up l i d = find (check un ique tag a r ray == 1) ;
%Grab the minimum va lue s
temp array (i d x o f dup l i d , 2) = min ([temp array (

i d x o f dup l i d , 2) , i n pu t s t r u c t (1 , i) . d i s t (1 , j)
]) ;

end %End of i f s ta tement
clear check un ique tag a r ray

end %end o f tag id f o r loop
end %end o f antenna number f o r loop

% %Get r i d o f d u p l i c a t e s between antennas .
% fo r k = 1 : 1 : s i z e (temp array , 1)
%
% end

output array = temp array ;
end %End of f unc t i on

function [r f i d 2d ou tpu t] = r f i d l o c a l i z a t i o n f x n s p e c (input array ,
i t e r a t i o n s)

131

% @br ie f The core func t i on o f the RFID l o c a l i z a t i o n t ha t t a k e s
in the

% tag coord ina t e s and the d i s t anc e s to each tag , and uses the
% Gaussian Newton method to f i nd the x y coord ina te . The spec
% add i t i on means t ha t i t i s s p e c i f i c to t h i s program .
% @param [in] t ag coord − 2D array o f tag coord ina tes , s i z e : Nx2
% @param [in] d i s t a r r a y − 2D array o f d i s t an c e s to the tag : NxM
% @param [in] i t e r a t i o n s − Number o f i t e r a t i o n s the Gaussian

newton w i l l
% loop over
% @param [out] r f i d 2 d o u t p u t − 2d array o f po s i t i on s , ob ta ined

from RFID
% tag s . Mx2 (M shou ld u s u a l l y be 1)
% @todo
% @reference − Code taken from :
%h t t p s ://www. mathworks . com/mat l a b cen t ra l / f i l e e x c h an g e /33792− s i n g l e−

mul t i p l e−t a r ge t− l o c a l i z a t i o n

%Assignments : Parsed in t o from the prepped tag in format ion array
%inpu t a r ray : (t a g i d , d i s t t o t a g , tag x coord , tag y coord , time

)
tag coord = input a r ray (: , (3 : 4)) ;
d i s t a r r a y = input a r ray (: , 2) ;

N = s ize (d i s t a r r ay , 1) ; %Number o f unique t ag s
M = s ize (d i s t a r r ay , 2) ; %Number o f d i s t ance va l u e s (u s u a l l y 1)

%Find the min and max s i z e o f the zone
zone min s i z e x = min(tag coord (: , 1)) ;
z one min s i z e y = min(tag coord (: , 2)) ;
zone max s i ze x = max(tag coord (: , 1)) ;
zone max s i ze y = max(tag coord (: , 2)) ;

z o n e s i z e x = zone max s i ze x − zone min s i z e x ;
z o n e s i z e y = zone max s i ze y − zone min s i z e y ;

%Form the i n i t i a l guess array
r f i d 2d ou tpu t (: , 1) = (z on e s i z e x ∗rand (M, 1))+zone min s i z e x ;
r f i d 2d ou tpu t (: , 2) = (z on e s i z e y ∗rand (M, 1))+zone min s i z e y ;

for m = 1 : M %Loop through number o f d i s t an c e s t ha t need to be
s o l v ed f o r
for i = 1 : i t e r a t i o n s %Loop through

% computing the esimated d i s t an c e s

132

d i s tanceEs t = sqrt (sum((tag coord − repmat (
r f i d 2d ou tpu t (m, :) ,N, 1)) . ˆ2 , 2)) ;

% computing the d e r i v a t i v e s
% d0 = s q r t ((x−x0) ˆ2 + (y−y0) ˆ2)
% d e r i v a t i v e s −> d (d0)/dx = (x−x0)/d0
% d e r i v a t i v e s −> d (d0)/dy = (y−y0)/d0

distanceDrv = [(r f i d 2d ou tpu t (m, 1)−tag coord (: , 1)) . /
d i s tanceEs t . . . % x−coord ina te

(r f i d 2d ou tpu t (m, 2)−tag coord (: , 2)) . /
d i s tanceEs t] ; % y−coord ina te

% d e l t a
%d e l t a = − (d is tanceDrv . ’∗ dis tanceDrv)ˆ−1∗dis tanceDrv . ’ ∗ (

d i s t anceEs t − d i s tanceNoi sy (: ,m)) ;
de l t a = − ((d istanceDrv . ’ ∗ distanceDrv) ˆ−1)∗distanceDrv . ’ ∗

(d i s tanceEs t − d i s t a r r a y (: ,m)) ;
% Updating the e s t ima t i on
r f i d 2d ou tpu t (m, :) = r f i d 2d ou tpu t (m, :) + de l t a . ’ ;

end

end

end %End of f unc t i on

%% END OF FUNCTION
end %END OF FUNCTION

Listing C.12: Code that takes in the accelerometer data from the IMU and finds the indices

in the data where the user stepped. Code was mostly written by Joseph Diener.

function [peak index] = c a l c u l a t e s t e p c o u n t s t r u c t (i npu t s t ru c t , dt)
% @br ie f Determines which i n d i c e s o f the imu data the s t e p s

occurred
% and what the magnitudes o f the peaks were at t h e s e t imes
% @param [in] i n p u t s t r u c t − s i z e 1x1 s t r u c t o f a l l o f the
% @param [in] d t − Sample time in seconds
% @param [out] peak index − Index o f the IMU data where the user

s tepped
% @recogni t ion − Code was wr i t t en by Joseph Diener

%Input data from s t r u c t
ax = inpu t s t r u c t . a c c e l x ;
ay = inpu t s t r u c t . a c c e l y ;
az = i npu t s t r u c t . a c c e l z ;
t imearb = 1 : length (ax) ;

%Ca l cu l a t e the magnitude o f a c c e l e r a t i o n
mag accel = sqrt ((ax . ˆ 2)+(ay . ˆ 2)+(az . ˆ 2)) ;

133

%Accelerometer FFT
ac c e l mag f r eq = f f t s h i f t (f f t (mag accel)) ; %Magnitude o f

Acce l e ra t i on in Frequency Domain
f r e q v a l u e s = (timearb − length (t imearb) /2) .∗ dt ;
f r eq abso lutewindower = 2 . 5 ; %%%We window to +/− t h i s in Hz

%Frequency domain windowing
[˜ , window minindex] = min(abs (f r e q v a l u e s +

f req abso lutewindower)) ;
[˜ , window maxindex] = min(abs (f r e q v a l u e s −

f r eq abso lutewindower)) ;

a c c e l mag f r eq (1 : window minindex − 1) = 0 ;
a c c e l mag f r eq (window maxindex+1 : end) = 0 ;

acce l mag freqsmoothed = i f f t (i f f t s h i f t (a c c e l mag f r eq) , ’
symmetric ’) ;

%Thresh−ho ld va lue ?
peak acce ldata = max(acce l mag freqsmoothed) ;
thresh = 0 . 8 ; %80% G of peak .

%Peak f i n d i n g
[peak index , peak mag] = peak f inde r (abs (acce l mag freqsmoothed)

, [] , thre sh) ;

end %End of f unc t i on

Listing C.13: Code taken from [44] that finds the peaks of a signal.

function varargout = peak f inde r (x0 , s e l , thresh , extrema ,
inc ludeEndpoints , i n t e r p o l a t e)

%%%SOURCE −

%%% h t t p s ://www. mathworks . com/mat l a bcen t ra l / f i l e e x c h an g e /25500−

peak f inder−x0−s e l−thresh−extrema−i nc ludeendpo in t s−i n t e r p o l a t e
%%%

%PEAKFINDER Noise t o l e r a n t f a s t peak f i n d i n g a l gor i thm
% INPUTS:
% x0 − A rea l v e c t o r from the maxima w i l l be found (r equ i r ed)
% s e l − The amount above surrounding data f o r a peak to be ,
% i d e n t i f i e d (d e f a u l t = (max(x0)−min(x0)) /4) . Larger va l u e s

mean
% the a l gor i thm i s more s e l e c t i v e in f i n d i n g peaks .

134

% thre sh − A th r e s ho l d va lue which peaks must be l a r g e r than to
be

% maxima or sma l l e r than to be minima .
% extrema − 1 i f maxima are des i red , −1 i f minima are de s i r ed
% (d e f a u l t = maxima , 1)
% inc ludeEndpo in t s − I f t rue the endpo in t s w i l l be inc luded as
% p o s s i b l e extrema o therw i s e they w i l l not be inc luded
% (d e f a u l t = t rue)
% i n t e r p o l a t e − I f t rue quadra t i c i n t e r p o l a t i o n w i l l be performed
% around each extrema to es t imate the magnitude and the
% po s i t i o n o f the peak in terms o f f r a c t i o n a l i n d i c i e s . Note

t ha t
% un l i k e the r e s t o f t h i s f unc t i on i n t e r p o l a t i o n assumes the
% input i s e q u a l l y spaced . To recover the x v a l u e s o f the

input
% ra the r than the f r a c t i o n a l i n d i c i e s you can do :
% peakX = x0 + (peakLoc − 1) ∗ dx
% where x0 i s the f i r s t x va lue and dx i s the spac ing o f the
% vec to r . Output peakMag to recover i n t e r p o l a t e d magnitudes .
% See example 2 f o r more in format ion .
% (d e f a u l t = f a l s e)
%
% OUTPUTS:
% peakLoc − The i n d i c i e s o f the i d e n t i f i e d peaks in x0
% peakMag − The magnitude o f the i d e n t i f i e d peaks
%
% [peakLoc] = peak f inde r (x0) re tu rns the i n d i c i e s o f l o c a l maxima

tha t
% are at l e a s t 1/4 the range o f the data above surrounding data .
%
% [peakLoc] = peak f inde r (x0 , s e l) r e tu rns the i n d i c i e s o f l o c a l maxima
% tha t are at l e a s t s e l above surrounding data .
%
% [peakLoc] = peak f inde r (x0 , s e l , t h r e sh) re tu rns the i n d i c i e s o f l o c a l
% maxima tha t are at l e a s t s e l above surrounding data and l a r g e r
% (sma l l e r) than th r e sh i f you are f i n d i n g maxima (minima) .
%
% [peakLoc] = peak f inde r (x0 , s e l , thresh , extrema) re tu rns the maxima o f

the
% data i f extrema > 0 and the minima o f the data i f extrema < 0
%
% [peakLoc] = peak f inde r (x0 , s e l , thresh , extrema , inc ludeEndpo in t s)
% re turns the endpo in t s as p o s s i b l e extrema i f inc ludeEndpo in t s

i s
% cons idered t rue in a boo lean sense
%
% [peakLoc , peakMag] = peak f inde r (x0 , s e l , thresh , extrema , i n t e r p o l a t e)

135

% re turns the r e s u l t s o f r e s u l t s o f quadra t i c i n t e r p o l a t e around
each

% extrema i f i n t e r p o l a t e i s cons idered to be t rue in a boo lean
sense

%
% [peakLoc , peakMag] = peak f inde r (x0 , . . .) r e tu rns the i n d i c i e s o f the
% l o c a l maxima as we l l as the magnitudes o f those maxima
%
% I f c a l l e d wi th no output the i d e n t i f i e d maxima w i l l be p l o t t e d

a long
% with the input data .
%
% Note : I f r epea ted va l u e s are found the f i r s t i s i d e n t i f i e d as the

peak
%
% Example 1 :
% t = 0 : . 0 0 01 : 1 0 ;
% x = 12∗ s in (10∗2∗ p i ∗ t)−3∗ s in (.1∗2∗ p i ∗ t)+randn (1 , numel (t)) ;
% x (1250:1255) = max(x) ;
% peak f inde r (x)
%
% Example 2 :
% ds = 100; % Downsample f a c t o r
% dt = .001 ; % Time s t ep
% ds d t = ds∗ dt ; % Time d e l t a a f t e r downsampling
% t0 = 1;
% t = t0 : d t :5 + t0 ;
% x = 0.2− s in (0.01∗2∗ p i ∗ t)+3∗cos (7/13∗2∗ p i ∗ t +.1)−2∗cos ((1+ pi /10) ∗2∗ p i ∗ t

+0.2)−0.2∗ t ;
% x (end) = min(x) ;
% x ds = x (1 : ds : end) ; % Downsample to t e s t i n t e r p o l a t i o n
% [minLoc , minMag] = peak f inde r (x ds , . 8 , 0 , −1, f a l s e , t rue) ;
% minT = t0 + (minLoc − 1) ∗ d s d t ; % Take in t o account 1 based

index ing
% p = p l o t (t , x , ’− ’ , t (1 : ds : end) , x ds , ’ o ’ ,minT ,minMag , ’ rv ’) ;
% s e t (p (2 : end) , ’ l i n ew id th ’ , 2) ; % Show the markers more c l e a r l y
% legend (’ Actual Data ’ , ’ Input Data ’ , ’ Estimated Peaks ’) ;
% Copyright Nathanael C. Yoder 2015 (nyoder@gmail . com)
% Perform error check ing and s e t d e f a u l t s i f not passed in
narginchk (1 , 6) ;
nargoutchk (0 , 2) ;
s = s ize (x0) ;
f l i pData = s (1) < s (2) ;
l en0 = numel (x0) ;
i f l en0 ˜= s (1) && len0 ˜= s (2)

error (’PEAKFINDER: Input ’ , ’The input data must be a vec to r ’)
e l s e i f isempty (x0)

136

varargout = { [] , [] } ;
return ;

end

i f ˜ i s rea l (x0)
warning (’PEAKFINDER: NotReal ’ , ’ Absolute value o f data w i l l be used ’)
x0 = abs (x0) ;

end

i f nargin < 2 | | isempty (s e l)
s e l = (max(x0)−min(x0)) /4 ;

e l s e i f ˜ i snumer i c (s e l) | | ˜ i s rea l (s e l)
s e l = (max(x0)−min(x0)) /4 ;
warning (’PEAKFINDER: I nv a l i d S e l ’ , . . .

’The s e l e c t i v i t y must be a r e a l s c a l a r . A s e l e c t i v i t y o f %.4g
w i l l be used ’ , s e l)

e l s e i f numel (s e l) > 1
warning (’PEAKFINDER: I nv a l i d S e l ’ , . . .

’The s e l e c t i v i t y must be a s c a l a r . The f i r s t s e l e c t i v i t y value
in the vec to r w i l l be used . ’)

s e l = s e l (1) ;
end

i f nargin < 3 | | isempty (thre sh)
thresh = [] ;

e l s e i f ˜ i snumer i c (thresh) | | ˜ i s rea l (thre sh)
thresh = [] ;
warning (’PEAKFINDER: Inva l idThresho ld ’ , . . .

’The th r e sho ld must be a r e a l s c a l a r . No thr e sho ld w i l l be used
. ’)

e l s e i f numel (thresh) > 1
thresh = thresh (1) ;
warning (’PEAKFINDER: Inva l idThresho ld ’ , . . .

’The th r e sho ld must be a s c a l a r . The f i r s t th r e sho ld value in
the vec to r w i l l be used . ’)

end

i f nargin < 4 | | isempty (extrema)
extrema = 1 ;

else

extrema = sign (extrema (1)) ; % Should on ly be 1 or −1 but make sure
i f extrema == 0

error (’PEAKFINDER: ZeroMaxima ’ , ’ E i ther 1 (f o r maxima) or −1 (f o r
minima) must be input f o r extrema ’) ;

end

end

i f nargin < 5 | | isempty (inc ludeEndpoints)
inc ludeEndpoints = true ;

end

i f nargin < 6 | | isempty (i n t e r p o l a t e)
i n t e r p o l a t e = f a l s e ;

137

end

x0 = extrema∗x0 (:) ; % Make i t so we are f i n d i n g maxima r e g a r d l e s s
thresh = thresh ∗ extrema ; % Adjust t h r e s h o l d accord ing to extrema .
dx0 = d i f f (x0) ; % Find d e r i v a t i v e
dx0 (dx0 == 0) = −eps ; % This i s so we f i nd the f i r s t o f repea ted va l u e s
ind = find (dx0 (1 : end−1) .∗ dx0 (2 : end) < 0)+1; % Find where the d e r i v a t i v e

changes s i gn
% Inc lude endpo in t s in p o t e n t i a l peaks and v a l l e y s as de s i r ed
i f inc ludeEndpoints

x = [x0 (1) ; x0 (ind) ; x0 (end)] ;
ind = [1 ; ind ; l en0] ;
minMag = min(x) ;
l e f tMin = minMag ;

else

x = x0 (ind) ;
minMag = min(x) ;
l e f tMin = min(x (1) , x0 (1)) ;

end

% x only has the peaks , v a l l e y s , and p o s s i b l y endpo in t s
l en = numel (x) ;
i f l en > 2 % Function wi th peaks and v a l l e y s

% Set i n i t i a l parameters f o r loop
tempMag = minMag ;
foundPeak = f a l s e ;
i f inc ludeEndpoints

% Deal wi th f i r s t po in t a l i t t l e d i f f e r e n t l y s ince tacked i t on
% Ca l cu l a t e the s i gn o f the d e r i v a t i v e s ince we tacked the

f i r s t
% po in t on i t does not n e c c e s s a r i l y a l t e r n a t e l i k e the r e s t .
signDx = sign (d i f f (x (1 : 3))) ;
i f signDx (1) <= 0 % The f i r s t po in t i s l a r g e r or equa l to the

second
i f signDx (1) == signDx (2) % Want a l t e r n a t i n g s i gn s

x (2) = [] ;
ind (2) = [] ;
l en = len −1;

end

else % Fi r s t po in t i s sma l l e r than the second
i f signDx (1) == signDx (2) % Want a l t e r n a t i n g s i gn s

x (1) = [] ;
ind (1) = [] ;
l en = len −1;

end

end

end

% Skip the f i r s t po in t i f i t i s sma l l e r so we always s t a r t on a
% maxima

138

i f x (1) >= x (2)
i i = 0 ;

else

i i = 1 ;
end

% Prea l l o c a t e max number o f maxima
maxPeaks = ce i l (l en /2) ;
peakLoc = zeros (maxPeaks , 1) ;
peakMag = zeros (maxPeaks , 1) ;
cInd = 1 ;
% Loop through extrema which shou ld be peaks and then v a l l e y s
while i i < l en

i i = i i +1; % This i s a peak
% Reset peak f i n d i n g i f we had a peak and the next peak i s

b i g g e r
% than the l a s t or the l e f t min was sma l l enough to r e s e t .
i f foundPeak

tempMag = minMag ;
foundPeak = f a l s e ;

end

% Found new peak t ha t was l a g e r than temp mag and s e l e c t i v i t y
l a r g e r

% than the minimum to i t s l e f t .
i f x (i i) > tempMag && x(i i) > l e f tMin + s e l

tempLoc = i i ;
tempMag = x(i i) ;

end

% Make sure we don ’ t i t e r a t e pas t the l e n g t h o f our vec t o r
i f i i == len

break ; % We ass i gn the l a s t po in t d i f f e r e n t l y out o f the
loop

end

i i = i i +1; % Move onto the v a l l e y
% Come down at l e a s t s e l from peak
i f ˜ foundPeak && tempMag > s e l + x (i i)

foundPeak = true ; % We have found a peak
l e f tMin = x(i i) ;
peakLoc (cInd) = tempLoc ; % Add peak to index
peakMag(cInd) = tempMag ;
cInd = cInd+1;

e l s e i f x (i i) < l e f tMin % New l e f t minima
l e f tMin = x(i i) ;

end

end

% Check end po in t
i f inc ludeEndpoints

i f x (end) > tempMag && x(end) > l e f tMin + s e l

139

peakLoc (cInd) = len ;
peakMag(cInd) = x(end) ;
cInd = cInd + 1 ;

e l s e i f ˜ foundPeak && tempMag > minMag % Check i f we s t i l l need
to add the l a s t po in t
peakLoc (cInd) = tempLoc ;
peakMag(cInd) = tempMag ;
cInd = cInd + 1 ;

end

e l s e i f ˜ foundPeak
i f x (end) > tempMag && x(end) > l e f tMin + s e l

peakLoc (cInd) = len ;
peakMag(cInd) = x(end) ;
cInd = cInd + 1 ;

e l s e i f tempMag > min(x0 (end) , x (end)) + s e l
peakLoc (cInd) = tempLoc ;
peakMag(cInd) = tempMag ;
cInd = cInd + 1 ;

end

end

% Create output
i f cInd > 1

peakInds = ind (peakLoc (1 : cInd−1)) ;
peakMags = peakMag (1 : cInd−1) ;

else

peakInds = [] ;
peakMags = [] ;

end

else % This i s a monotone func t i on where an endpoint i s the on ly peak
[peakMags , xInd] = max(x) ;
i f inc ludeEndpoints && peakMags > minMag + s e l

peakInds = ind (xInd) ;
else

peakMags = [] ;
peakInds = [] ;

end

end

% Apply t h r e s h o l d va lue . Since always f i n d i n g maxima i t w i l l a lways be
% l a r g e r than the th r e sh .
i f ˜isempty (thre sh)

m = peakMags>thresh ;
peakInds = peakInds (m) ;
peakMags = peakMags (m) ;

end

i f i n t e r p o l a t e && ˜isempty (peakMags)
middleMask = (peakInds > 1) & (peakInds < l en0) ;
noEnds = peakInds (middleMask) ;

140

magDiff = x0 (noEnds + 1) − x0 (noEnds − 1) ;
magSum = x0 (noEnds − 1) + x0 (noEnds + 1) − 2 ∗ x0 (noEnds) ;
magRatio = magDiff . / magSum;
peakInds (middleMask) = peakInds (middleMask) − magRatio /2 ;
peakMags (middleMask) = peakMags (middleMask) − magRatio .∗ magDiff

/8 ;
end

% Rotate data i f needed
i f f l i pData

peakMags = peakMags . ’ ;
peakInds = peakInds . ’ ;

end

% Change s i gn o f data i f was f i n d i n g minima
i f extrema < 0

peakMags = −peakMags ;
x0 = −x0 ;

end

% Plot i f no output d e s i r ed
i f nargout == 0

i f isempty (peakInds)
disp (’No s i g n i f i c a n t peaks found ’)

else

figure ;
plot (1 : len0 , x0 , ’ .− ’ , peakInds , peakMags , ’ ro ’ , ’ l i n ew id th ’ , 2) ;

end

else

varargout = {peakInds , peakMags } ;
end

Listing C.14: Code used to calculate heading from the IMU’s gyroscope data.

function [output] = ca l c u l a t e gy r o ang l e s t r u c t c u t down (inpu t s t ru c t ,
d i r ec , gyro gain mag , f l i p y n)
% @br ie f Function t ha t i n t e g r a t e s the gyroscope data to ge t the

heading
% @param [in] imu data − Nx1 angu lar v e l o c i t y va l u e s t ha t w i l l be

i n t e g r a t e d
% @param [in] d i r e c − Se t s which ax i s i s the c en t r a l a x i s o f

r o t a t i on
% @param [in] gyro gain mag − Coe f f i c i e n t to mu l t i p l y the gyro data

by
% @param [in] f l i p y n − Allows f o r r o t a t i n g the heading 180 deg i f
% IMU was f l i p p e d
% @param [out] output − Nx1 data s e t o f angu lar headings in degrees

141

%Populate imu data − Nx1 angu lar v e l o c i t y va l u e s t ha t w i l l be
i n t e g r a t e d

i f (d i r e c == ’x ’)
gyro data = gyro gain mag ∗ i n pu t s t r u c t . gyro x ;

e l s e i f (d i r e c == ’y ’)
gyro data = gyro gain mag ∗ i n pu t s t r u c t . gyro y ;

e l s e i f (d i r e c == ’ z ’)
gyro data = gyro gain mag ∗ i n pu t s t r u c t . gyro z ;

end

t ime data = inpu t s t r u c t . imu time ;

%I f IMU was p h y s i c a l l y f l i p p e d , a l l ow f o r the opt ion o f r o t a t i n g
the

%data 180
i f (f l i p y n == ’n ’)

f l i p c o e f f = 1 ;
e l s e i f (f l i p y n == ’y ’)

f l i p c o e f f = −1;
else

disp (’PLEASE PUT y OR n FOR f l i p y n ! ! ! ! ’)
end

%Populate the i n i t i a l heading
i n i t i a l h e a d i n g = inpu t s t r u c t . i n i t i a l h e a d i n g ; %Degrees

%Assign output
output = (f l i p c o e f f ∗cumtrapz (t ime data , gyro data)) +

i n i t i a l h e a d i n g ;

end %End of f unc t i on

Listing C.15: Code that takes in the user’s step indices in the IMU data, the cumulative

heading of the user, the RFID 2D initial position and its time of occurrence and then

calculates the user’s 2D coordinates. The user’s position is only advanced when there is a

step. A placeholder is left towards the end of the code if someone wants to fuse all RFID

positions with all dead reckoned positions.

function [p o s i t i on 2d] = c a l c u l a t e 2 d po s i t i o n s t r u c t mk2 f xn (
i npu t s t ru c t , g a i t c o e f f , i n v o k e r f i d 2 d p o s i t i o n i n g)
% @br ie f − Function t ha t c a l u c l a t e s the 2d po s i t i o n us ing imu and
% r f i d data
% @param [in] i n p u t s t r u c t − Zone s t r u c t t h a t con ta ins a l l o f the

data
% requ i r ed

142

% @param [in] g a i t c o e f f − Constant va lue f o r the user ’ s f t / s t ep
t r a v e l d i s t ance

% @param [in] i n v o k e r f i d 2 d p o s i t i o n i n g − Whether to j u s t use IMU
fo r p o s i t i o n or

% RFID. ’ y ’ f o r yes / ’n ’ f o r no (j u s t use IMU) . ZCA w i l l a lways
s t i l l

% use RFID to c a t e g o r i z e r e g a r d l e s s o f whether ’ y ’ or ’n ’ i s put .
% @param [out] p o s i t i on 2d − Estimated 2D po s i t i o n from IMU data (

Nx2)−>X: (: , 1)
% Y: (: , 2)
% @todo

% Sources
% h t t p s :// b l o g . endaq . com/ quaternions−for−o r i e n t a t i o n
% h t t p s :// g i t hu b . com/ j e rabau l 29 / IntegrateGyroData

%Time array o f the IMU data
imu t = inpu t s t r u c t . imu time ;

%Determine where the i n i t i a l time read ing f a l l s in wi th the IMU
data

i n i t i a l t i m e = inpu t s t r u c t . i n i t i a l e n t e r t i m e ;
[˜ , i n s e r t i o n i d x] = min(abs (imu t − i n i t i a l t i m e)) ;

%pk idx − Ind i c e s o f the user ’ s s t e p s f o r the IMU data array
pk idx = inpu t s t r u c t . s t e p i n d i c e s ;
%x , y i n i t i a l p o s i t i o n
i n i t i a l p o s i t i o n = inpu t s t r u c t . i n i t i a l x y ;
%gyro ang l e − Array o f ang l e s c a l c u l a t e d from the gyroscope data
gyro ang l e = i npu t s t r u c t . ang l e gyro ;
%I n i t i a l heading
angle (1) = i npu t s t r u c t . i n i t i a l h e a d i n g ; %Degree

%Create array t ha t has a 1 f o r when the user s t e p s . The user ’ s
p o s i t i o n

%i s advanced only when t h i s array has a s t ep va lue . The user i s not
%advanced in the absence o f s t e p s
peak b inary ar ray = zeros (length (imu t) ,1) ;
peak b inary ar ray (pk idx) = 1 ;

%dec l a r e index ing v a r i a b l e s and i n i t i a l p o s i t i o n
xy pa i r = i n i t i a l p o s i t i o n ; %f t ?
po s t i n s e r t i o n imu po s i t i o n 2d (1 , :) = xy pa i r ;
i = 1 ;

143

for (index = i n s e r t i o n i d x : 1 : length (imu t))
%Always update ang l e

angle (index) = gyro ang l e (index) ;

%Peak f i nd − increment disp lacement , then update xy coord
i f (peak b inary ar ray (index) == 1)

xy pa i r (1) = xy pa i r (1) + (g a i t c o e f f ∗ cosd (angle (index))
) ;

xy pa i r (2) = xy pa i r (2) + (g a i t c o e f f ∗ s ind (angle (index))
) ;

i = i + 1 ;
p o s t i n s e r t i o n imu po s i t i o n 2d (i , :) = xy pa i r ;

end

end

%Determine the p r e i n s e r t i o n 2d po s i t i o n
xy pa i r = po s t i n s e r t i o n imu po s i t i o n 2d (1 , :) ;%I n i t i a l cond i t i on
p r e i n s e r t i o n imu po s i t i o n 2d (1 , :) = xy pa i r ;
i = 1 ;
for (index = i n s e r t i o n i d x :(−1) : 1) %Countdown from i n s t e r t i o n idx
%Always update ang l e

angle (index) = gyro ang l e (index) ;

%Peak f i nd − increment disp lacement , then update xy coord
i f (peak b inary ar ray (index) == 1)

xy pa i r (1) = xy pa i r (1) − (g a i t c o e f f ∗ cosd (angle (index))
) ;

xy pa i r (2) = xy pa i r (2) − (g a i t c o e f f ∗ s ind (angle (index))
) ;

i = i + 1 ;
p r e i n s e r t i o n imu po s i t i o n 2d (i , :) = xy pa i r ;

end

end

%Fl ip matrix as we b u i l t i t up from the end
p r e i n s e r t i o n imu po s i t i o n 2d = f l i p (p r e i n s e r t i o n imu po s i t i o n 2d)

;

%Get r i d o f l a s t row as i t i s redundant
p r e i n s e r t i o n imu po s i t i o n 2d = p r e i n s e r t i o n imu po s i t i o n 2d (1 : (

end−1) , :) ;

%Concatenate the pre and pos t i n s e r t i o n va lue
imu pos i t i on 2d = cat (1 , p r e i n s e r t i o n imu po s i t i o n 2d ,

p o s t i n s e r t i o n imu po s i t i o n 2d) ;

%RFID + IMU FUSION?

144

i f i n v o k e r f i d 2 d p o s i t i o n i n g == ’n ’
po s i t i on 2d = imu pos i t i on 2d ;

e l s e i f i n v o k e r f i d 2 d p o s i t i o n i n g == ’y ’
%//FIXME Need to f u s e IMU and RFID data here

end

end %End of f unc t i on

Listing C.16: Function used to perform map matching. Based on the code described in [47].

function [map matched 2d coords] = map match fxn (input 2d coords ,
l i ne map ar ray)
% @br ie f For each input coordinate , c a l c u l a t e the d i s t ance between

i t and
% every l i n e segment . The minimum d i s t ance i s the c l o s e s t l i n e

segment .
% @param [in] inpu t 2d coord s − The array o f XY coord ina t e s t ha t

need to
% be matched . Data format : [N x 2] where N i s the number o f XY
% coord ina t e s . 2 corresponds to the [X,Y]
% @param [in] l ine map array − The array o f coord ina t e s t ha t mark

the
% s t a r t and s top coord ina t e s o f a l i n e . Data fromat : [M x 4]

where M i s
% the number o f l i n e segments in the map , and 4 corresponds to
% [X begin , Y begin , X end , Y end] .
% @param [out] map matched 2d coords − The array o f map matched
% coord ina t e s . Data format : [N x 2] where N i s the number o f XY
% coord ina t e s . 2 corresponds to the [X,Y]

%Code taken from :
%h t t p s :// s t a c k o v e r f l ow . com/ que s t i on s /849211/ sho r t e s t−d i s tance−

between−a−point−and−a−l i n e−segment
%Contr i bu t ing User : Joshua . Accessed : 3/17/21

for idx = 1 : 1 : s ize (input 2d coords , 1)
%Temp v a r i a b l e s
tpx = input 2d coords (idx , 1) ; %x coord ina te o f po in t
tpy = input 2d coords (idx , 2) ; %y coor idna te o f po in t
tx1 = l ine map ar ray (: , 1) ; %X coord ina te o f l i n e segment

beg inn ing
ty1 = l ine map ar ray (: , 2) ; %Y coord ina te o f l i n e segment

beg inn ing
tx2 = l ine map ar ray (: , 3) ; %X coord ina te o f l i n e segment end
ty2 = l ine map ar ray (: , 4) ; %Y coord ina te o f l i n e segment end

145

A = tpx − tx1 ; %Vector from beg inn ing o f l i n e segment to po in t
B = tpy − ty1 ; %Vector from end o f l i n e segment to po in t
C = tx2 − tx1 ; %X vec to r component o f the l i n e segment
D = ty2 − ty1 ; %Y vec to r component o f the l i n e segment

%Ca l cu l a t i on s
dot = (A.∗C) + (B.∗D) ; %Dot product
l e n s q = (C.∗C) + (D.∗D) ; %Length c a l c u l a t i o n

for l i n e i d x = 1 : 1 : s ize (l ine map array , 1) %Need to do the l o g i c
check f o r each l i n e
param = −1;
i f (l e n s q (l i n e i d x) ˜= 0) %Check to make sure i t i s not a

zero l en g t h vec t o r
param = dot (l i n e i d x) . / l e n s q (l i n e i d x) ;

end

%Check the t h r ee cases
% Case 1 : Matched po in t l i e s w i th in segment
% Case 2 : C l o s e s t po in t in l i n e segment i s the beg inn ing
% Case 3 : C l o s e s t po in t in l i n e segment i s the end
i f (param < 0) %Check case 2

xx (l i n e i d x) = tx1 (l i n e i d x) ;
yy (l i n e i d x) = ty1 (l i n e i d x) ;
%Matches po in t to the beg inn ing o f the l i n e i f ou t s i d e

l i n e
e l s e i f (param > 1) %Check case 3

xx (l i n e i d x) = tx2 (l i n e i d x) ;
yy (l i n e i d x) = ty2 (l i n e i d x) ;
%Matches po in t to the end o f the l i n e i f ou t s i d e l i n e

else %Case 1
xx (l i n e i d x) = tx1 (l i n e i d x) + param .∗C(l i n e i d x) ;
yy (l i n e i d x) = ty1 (l i n e i d x) + param .∗D(l i n e i d x) ;

end %End of i f−e l s e
end %End of f o r loop

%xx : x coord ina te o f the matched po in t !
%yy : y coord ina te o f the matched po in t !

%Ca l cu l a t e d i s t ance in x and y d i r e c t i o n from po in t to matched
%po in t
dx = tpx − xx ; %X Distance from matched po in t to
dy = tpy − yy ; %Y Distance from matched po in t to
d out = sqrt ((dx .∗ dx) + (dy .∗ dy)) ; %Ca l cu l a t e d i s t ance

magnitude

146

[˜ , min idx (idx)] = min(d out) ;
map matched 2d coords (idx , :) = [xx (min idx (idx)) , yy (min idx (idx

))] ;
clear tpx tpy tx1 ty1 tx2 ty2 temp numer temp denom

temp di s t to segment

end %End of f o r loop

end %End of f unc t i on

Listing C.17: The main localization function. This script calls all of the previous functions.

Takes in all of the pre-characterization files, data files, and user input to run. This script

outputs the localized positions graphically.

clear a l l

close a l l

t ic %Sta r t record ing program run time
%Heading Convention
%−−−−−−−−−−−−−−90−−−−−−−−−−−

%−−−−−−−−−−180−{}−0−−−−−−−−−−

%−−−−−−−−−−−−−270−−−−−−−−−−−

%% USER DEFINED GLOBAL VARIABLES
l o c a t i o n = ’G:\CSMGRAD\ r f i d p r o j e c t \ edga r m in e r e su l t s \data \140 sec \

run2\ ’ ; %WINDOWS
% lo c a t i o n = ’/ Users/ r j /Documents/RFID project / ed ga r m ine r e su l t s / data

/140 sec /run2 / ’ ; %MAC

f i l ename imu = ’ imu out . txt ’ ;
f i l e n ame r f i d = ’ r f id combined data . txt ’ ;
f i l ename zone = ’ z on e i n f o . csv ’ ;
f i l e n ame l u t = ’ edgar lut rhcp1 30dbm .mat ’ ;
f i l ename zone connec t = ’ z o n e r e l a t i o n .mat ’ ; %Give us v a r i a b l e :

z o n e r e l a t i o n s t r u c t
f i l ename l ine map = ’ zone map .mat ’ ; %This i s what grabs the ’

l ine map array ’ v a r i a b l e

%Gait Constants
s t ep rob = 2 . 3 ; %ORIGINAL was 1.3207 in brown . 2 .3 in Edgar
u s e r g a i t = s t ep rob ;

%Tag Parameters − l a s t t h r e e number o f tag i d e n t i f i e r (HARDCODED)
number of msmnt antennas = 2 ; %How many measurement antennas are used

on the l o c a l i z a t i o n harness

147

%IMU SAMPLE RATE
%I f we sample at 100 Hz (assumed) , then every sample i s 10 ms . So ;
dt = 10/1000;

%Heading Tolerance
%Used in the heading co r r e c t i on code . I f mean ang l e i s g r ea t e r than +/−

the t o l e r anc e
%then app ly co r r e c t i on . I f not do noth ing
head ing t o l = 5 ; %degrees

%Gyro Heading Direc t ion (Gyroscope d i r e c t i o n t ha t w i l l be i n t e g r a t e d to
%f i nd the heading
gy ro head ing ax i s = ’ y ’ ; % Choice are ’ x ’ , ’ y ’ , ’ z ’ (’ z ’ i s nominal)
gyro ga in = 1 . 0 ; % %ca l l e d the ’ Sca l e Factor ’ in the l i t e r a t u r e − Used

i f you need to s c a l e
%the time domain va l u e s o f the gyroscope read ings . Set

to 1 f o r no s c a l i n g
f l i p 1 8 0 = ’y ’ ; %CCW turns shou ld be p o s t i v e and CW turns shou ld be

nega t i v e .
%I f the IMU i s f l i p p e d p h y s i c a l l y then you have the

a b i l i t y
%to f l i p the heading 180 by the i n t r oduc t i on o f a minus
%s i gn in the gyroscope heading func t i on .
%Put a ’ y ’ to do t h i s . ’n ’ to not .

%RFID 2D Pos i t i on ing Inputs
tws = 0 . 5 ; %Time Window S i z e
wo = 0 . 2 5 ; %Window over l ap
gni = 10 ; %Gauss newton i t e r a t i o n s

%2D POSITION ANALYSIS TYPE
u s e 2 d r f i d p o s = ’n ’ ; %’n ’ f o r no r f i d 2d po s i t i o n j u s t imu , ’ y ’ to

f u s e IMU and RFID 2d po s i t i o n i n g e s t ima t e s

%PLOTTING SWITCHING
p l o t i n t e r r e s u l t s = ’n ’ ; %’y ’ f o r yes , ’n ’ f o r no
p l o t imu on l y and r f i d on l y = ’y ’ ; %’y ’ f o r yes , anyth ing e l s e f o r no .

%Apply map matching
map match yes no = ’y ’ ;

%Rotate f i n a l r e s u l t s
r e s u l t r o t a t a n g l e = 25 . 2826 ; %Enter the ang l e one wishes to r o t a t e a l l

r e s u l t s .

148

%I f you do not want to r o t a t e r e s u l t s , put a
zero

%CCW i s p o s i t i v e

%I n i t i a l Zone (the zone the user s t a r t s in)
i n i t i a l z o n e = 1 ; %I f t h i s changes , make sure the zone connect ion map

i s
%a l t e r e d so t ha t
%z o n e r e l a t i o n s t r u c t (i n i t i a l z o n e , i n i t i a l z o n e)
%i s a v a l i d entry

%% LOAD IN DATA & SPLIT INTO COMPONENTS
%−−−−−−−−−−−−−−LOAD ZONE INFORMATION−−−−−−−−−−−−−−

opts = detectImportOptions ([l o c a t i o n f i l ename zone]) ;
z on e i n f o = readtab l e ([l o c a t i o n f i l ename zone] , opts) ;
number of zones = s ize (zone in fo , 1) ; %Zone in f o − tag coords , zone #,

and zone type

%−−−−−−−−−−−−−−LOAD LUT−−−−−−−−−−−−−−−

load (f i l e n ame l u t)
l u t eqn = c u r v e f i t o b j e c t ;

%−−−−−−−−−−−−−−LOAD ZONE RELATION−−−−−−

load (f i l ename zone connec t)
%Gives us the v a r i a b l e : z o n e r e l a t i o n s t r u c t

%−−−−−−−−−−−−−−LOAD BASIC MAP FOR MAP MATCHING−−−−−−−−−

load (f i l ename l ine map) %This i s what grabs the ’ l ine map array ’
v a r i a b l e

%−−−−−−−−−−−−−−IMU SPLIT−−−−−−−−−−−−−−

[imu data] = ext rac t imu data ag (l o ca t i on , f i l ename imu) ;
a c c e l x = imu data . ax ; a c c e l y = imu data . ay ; a c c e l z = imu data . az ;
gyro x = imu data . gx ; gyro y = imu data . gy ; gyro z = imu data . gz ;
imu time = imu data . time ;

%−−−−−−−−−−−−−RFID SPLIT−−−−−−−−−−−−−−

[r f i d d a t a] = e x t r a c t r f i d d a t a f a c t o r y (l o ca t i on , f i l e n ame r f i d) ;
t a g i d e n t t a i l = r f i d d a t a . t a g i d en t ;
r eade r t ime = r f i d d a t a . r eade r t ime ;

[r f i d z one , max poss num tags , tag x var names , tag y var names ,
tag ident var names] = c a t e g o r i z e r f i d d a t a n t a g s (zone in fo ,
t a g i d e n t t a i l) ;

149

%% Suppress Warning
%Suppress warnings
warning (’ o f f ’)
%Needed because the RFID 2D ca l c u l a t i o n genera te
%many , many warnings about poor l y s ca l e d matr ices
%Does not suppres s e r ro r s .

%% Take IMU Data and Categor i z e i t i n t o zones
[imu zone ind i ce s , imu zone t imes , zone prog r e s s i on , r f i d z o n e i n d i c e s]

= ca t ego r i z e imu data (imu time , reader t ime , r f i d z o n e) ;

%% CREATE STRUCTS
% Assign a unique co lor , l i n e s t y l e , and marker scheme to each zone .
for index = 1 : 1 : number of zones
%P lo t t i n g S e t t i n g s
[temp color , t emp l i n e s t y l e , temp marker]= s e t z on e un i qu e c o l o r (index)

;
z on e s t r u c t (index) . c o l o r = temp color ;
z on e s t r u c t (index) . l i n e s t y l e = t emp l i n e s t y l e ;
z on e s t r u c t (index) . marker = temp marker ;
clear temp co lor t emp l i n e s t y l e temp marker

%Assign zone type to the s t r u c t
z on e s t r u c t (index) . type = zone i n f o . type (index) ;

%XY Coordinates
for tag index = 1 : 1 : max poss num tags

%Ignore the l a b e l g i ven to the t a g s when they are p laced in t o the
. xy

%proper ty o f the s t r u c t ; they are not a l l tag1 x , tag1 y , but
i n s t ead

%are tag1 x , tag2 x , . . . , tagN x and tag1 y , tag2 y , . . . tagN y , e t c .
z on e s t r u c t (index) . xy (tag index , :) = [z on e i n f o (index ,

tag x var names (1 , tag index)) , z on e i n f o (index , tag y var names
(1 , tag index))] ;

end

end

%ASSUME TIME STARTS AT ZERO
%I n i t i a l i z a t i o n
%z t r : zone t r a n s i t i o n
imu z t r i n d i c e s = [i n i t i a l z o n e imu zone ind i c e s s ize (imu time , 2)] ;

150

imu zt r t imes = [0 imu zone t imes imu time (end)] ;
zone count = s ize (zone prog r e s s i on , 2) ;
for index = 1 : 1 : zone count

%///Data Assignment ////
%Zone Informat ion
da t a s t r u c t (index) . zone = zone p rog r e s s i on (index) ;
temp zone ident = da t a s t r u c t (index) . zone ;

%SET THE INITIAL HEADING AND ESTIMATED POSITION (JUST IN CASE IT IS
%NEEDED)
i f (index ˜= 1)

p r ev zone id en t = da t a s t r u c t (index −1) . zone ;
da t a s t r u c t (index) . i n i t i a l h e a d i n g = z o n e r e l a t i o n s t r u c t (

prev zone ident , temp zone ident) . f z t h ead i ng ; %degrees
de f au l t xy po s = z o n e r e l a t i o n s t r u c t (prev zone ident ,

temp zone ident) . xy f z ;
else %I f index = 1 , then j u s t s e t the zone

da t a s t r u c t (index) . i n i t i a l h e a d i n g = z o n e r e l a t i o n s t r u c t (
temp zone ident , temp zone ident) . f z t h ead i ng ; %degrees

de f au l t xy po s = z o n e r e l a t i o n s t r u c t (temp zone ident ,
temp zone ident) . xy f z ;

end

t emp i n i t i a l h e ad i n g = da ta s t r u c t (index) . i n i t i a l h e a d i n g ;

%RFID Informat ion
da t a s t r u c t (index) . p o s s i b l e t a g t a i l s = tag name pu l l func (

tag ident var names , da t a s t r u c t (index) . zone , z on e i n f o) ;
d a t a s t r u c t (index) . r f i d i d x b e g i n = r f i d z o n e i n d i c e s (index) ;
d a t a s t r u c t (index) . r f i d i d x e nd = r f i d z o n e i n d i c e s (index+1)−1; %

Sub t rac t 2nd array va lue by 1
[t emp rss i , temp phase , temp ident , temp time] =

sp l i t r f i d d a t a by an t e nn a and t a g i d (da t a s t r u c t (index) ,
r f i d da t a , number of msmnt antennas) ;

d a t a s t r u c t (index) . s o r t e d r s s i = temp r s s i ;
d a t a s t r u c t (index) . s o r t ed phase = temp phase ;
d a t a s t r u c t (index) . s o r t e d i d en t = temp ident ;
d a t a s t r u c t (index) . s o r t ed t ime = temp time ;
da t a s t r u c t (index) . c omp l e t e r f i d t ime da ta = r f i d d a t a . r eade r t ime (

da t a s t r u c t (index) . r f i d i d x b e g i n : da t a s t r u c t (index) .
r f i d i d x e nd) ;

clear t emp r s s i temp phase temp ident temp time

%Type o f zone : ’ s ’ f o r s t r a i g h t s ec t i on , ’ t ’ f o r T junct ion , ’ b ’
f o r 90

%degree bend
da t a s t r u c t (index) . zone type = zone s t r u c t (temp zone ident) . type ;

151

%Zone p l o t t i n g in format ion
da t a s t r u c t (index) . c o l o r = zone s t r u c t (da t a s t r u c t (index) . zone) .

c o l o r ;
d a t a s t r u c t (index) . l i n e s t y l e = zone s t r u c t (da t a s t r u c t (index) . zone)

. l i n e s t y l e ;
d a t a s t r u c t (index) . marker = zone s t r u c t (da t a s t r u c t (index) . zone) .

marker ;

%IMU Informat ion
i f index < zone count

imu data index range = imu z t r i n d i c e s (index) : (imu z t r i n d i c e s (
index+1)−1) ;

e l s e i f index == zone count %Do not chop o f f l a s t time sample
imu data index range = imu z t r i n d i c e s (index) : imu z t r i n d i c e s (

index+1) ;
end %End of i f −e l s e c ond i t i ona l
da t a s t r u c t (index) . imu time = imu time (imu data index range) ;
d a t a s t r u c t (index) . a c c e l x = a c c e l x (imu data index range) ;
d a t a s t r u c t (index) . a c c e l y = a c c e l y (imu data index range) ;
d a t a s t r u c t (index) . a c c e l z = a c c e l z (imu data index range) ;
d a t a s t r u c t (index) . gyro x = gyro x (imu data index range) ;
d a t a s t r u c t (index) . gyro y = gyro y (imu data index range) ;
d a t a s t r u c t (index) . gyro z = gyro z (imu data index range) ;

%/// Ca l cu l a t i on s ///
%Ca l cu l a t e heading
da t a s t r u c t (index) . ang l e gyro =

ca l c u l a t e gy r o ang l e s t r u c t c u t down (da t a s t r u c t (index) ,
gy ro head ing ax i s , gyro ga in , f l i p 1 8 0) ;

%Apply mean heading co r r e c t i on (L igh t Map Matching)
i f s t r i n g (da t a s t r u c t (index) . zone type) == ’ s ’ %St r a i g h t s e c t i on

cond i t i o na l
%I f mean ang le i s g r ea t e r than +/− the t o l e r anc e
%then app ly co r r e c t i on . I f not do noth ing
%Note : Might need to app ly t h i s a t the 2d po s i t i o n l e v e l
temp mean heading = mean(da t a s t r u c t (index) . ang l e gyro) ;

%Correct f o r heading va l u e s over 360?

%Ca l cu l a t e d i f f e r e n c e between the i n i t i a l heading (which shou ld
be

%the average heading through the zone) and the c a l c u l a t e d mean
%heading through the zone
d i f f = temp mean heading − t emp i n i t i a l h e ad i n g ; %Ca l cu l a t e

d i f f e r e n c e

152

i f abs (d i f f) >= head ing to l
da t a s t r u c t (index) . ang l e gyro = da ta s t r u c t (index) .

ang l e gyro − d i f f ;
end

end

%Ca l cu l a t e RFID 2D Pos i t i on
da t a s t r u c t (index) . r f i d 2 d p o s i t i o n = r f i d 2d pos p ro to type fxn mk3

(da t a s t r u c t (index) , z on e s t r u c t (temp zone ident) , tws ,wo , gni ,
lut eqn , p l o t i n t e r r e s u l t s) ;

%CALCULATE INITIAL POSITION
[t emp in i t i a l x y , t emp i n i t i a l t im e] = i n i t i a l p o s c a l c f x n (

da t a s t r u c t (index) , d e f au l t xy po s) ;
d a t a s t r u c t (index) . i n i t i a l x y = t emp i n i t i a l x y ;
da t a s t r u c t (index) . i n i t i a l e n t e r t i m e = t emp i n i t i a l t im e ; %

Determine v ia RFID
clear t emp i n i t i a l h e ad i n g t emp i n i t i a l x y

%Ca l cu l a t e number o f s t e p s
da t a s t r u c t (index) . s t e p i n d i c e s = c a l c u l a t e s t e p c o u n t s t r u c t (

da t a s t r u c t (index) , dt) ;

%Ca l cu l a t e IMU (+RFID) 2D po s i t i o n
da t a s t r u c t (index) . xy coord = ca l c u l a t e 2 d po s i t i o n s t r u c t mk2 f xn (

da t a s t r u c t (index) , u s e r g a i t , u s e 2 d r f i d p o s) ;

%MAP MATCHING HERE
i f (map match yes no == ’y ’ | | map match yes no == ’Y ’)

da t a s t r u c t (index) . xy coord = map match fxn (da t a s t r u c t (index) .
xy coord , l i ne map ar ray) ;

end

%Clear temp v a r i a b l e s f o r t h i s loop i t e r a t i o n
clear t emp i n i t i a l h e ad i n g temp zone ident temp mean heading

de f au l t xy po s
end %End of f o r loop

%% PLOTTING
i f (p l o t i n t e r r e s u l t s == ’y ’) | | (p l o t i n t e r r e s u l t s == ’Y ’)

p l o t r f i d r e s u l t s (da ta s t ruc t , number of msmnt antennas)
end

p lo t 2d pos i t i on mk2 (data s t ruc t , zone s t ruc t , l ine map array ,
r e s u l t r o t a t a n g l e)

toc %Print execu t i on time

153

%save data :
save (’ imu proces sed data .mat ’ , ’ d a t a s t r u c t ’ , ’ z on e s t r u c t ’)

%% FUNCTIONS
function [imu data] = ext rac t imu data ag (l o ca t i on , f i l ename imu)

% @br ie f Takes in the IMU . t x t f i l e and e x t r a c t s the a c c l e r a t i o n
and

% gyroscope data
% @param [in] l o c a t i o n − Where the . t x t f i l e i s l o c a t e d
% @param [in] f i l ename − Name of the . t x t f i l e
% @param [out] imu data − Output s t r u c t t ha t conta ins a l l o f the

output data
% @todo
imu dataset = dlmread ([l o c a t i o n f i l ename imu]) ;

%Grab acce l e rometer data
a c c e l = imu dataset (: , [2 3 4]) ;
imu data . ax = ac c e l (: , 1) ;
imu data . ay = ac c e l (: , 2) ;
imu data . az = ac c e l (: , 3) ;

%Grab Gyroscope data :
gyro = imu dataset (: , [5 6 7]) ;
imu data . gx = gyro (: , 1) ;
imu data . gy = gyro (: , 2) ;
imu data . gz = gyro (: , 3) ;

%Grab Magnetometer data :
magnet = imu dataset (: , [8 9 10]) ;
imu data .mx = magnet (: , 1) ;
imu data .my = magnet (: , 2) ;
imu data .mz = magnet (: , 3) ;

%Grab time domain data
imu data . time = imu dataset (: , 11) ’ ;

end %End of f unc t i on

function [r f i d d a t a] = e x t r a c t r f i d d a t a f a c t o r y (l o ca t i on , f i l e n ame r f i d
)
% @br ie f Function e x t r a c t s the data from the RFID . t x t f i l e s
% @param [in] l o c a t i o n − Location f o r where the r f i d data i s s t o r ed
% @param [in] f i l e n ame r f i d − Filename o f the r f i d data
% @param [out] r f i d d a t a − S t ruc tu re t ha t con ta ins a l l o f the RFID

data

154

% @todo Create a ve r s i on o f t h i s f unc t i on t ha t works wi th the
custom tag s

r f i d d a t a s e t = readtab l e ([l o c a t i o n f i l e n ame r f i d]) ;

t ag ident raw = tab l e2a r ray (r f i d d a t a s e t (: , 1)) ;

%Remove the exce s s charac t e r s − HARDCODED BASED ON THE TAGS USED
FOR THIS

%EXPERIMENT (the end−5 and end−1 component)
for index = 1 : 1 : s ize (tag ident raw , 1)

temp = (regexprep (tag ident raw { index , 1} , ’ b ’ , ’ ’)) ;
t a g i d en t (index , 1) = st r2doub l e (temp(end−5:end−1)) ;

end

r f i d d a t a . t a g i d en t = tag i d en t ;
r f i d d a t a . r eade r t ime = tab l e2a r ray (r f i d d a t a s e t (: , 5)) ; %seconds
r f i d d a t a . antenna = tab l e2a r ray (r f i d d a t a s e t (: , 4)) ;
r f i d d a t a . r s s i = tab l e2a r ray (r f i d d a t a s e t (: , 3)) ; %dB
r f i d d a t a . phase = tab l e2a r ray (r f i d d a t a s e t (: , 2)) ; %Degrees

end %End of f unc t i on

function [co lo r , l i n e s t y l e , marker] = s e t z on e un i qu e c o l o r (seed)
% @br ie f −

% @param [in] seed − the random seed
% @param [out] c o l o r − Plo t l i n e co l o r
% @param [out] l i n e s t y l e − Plo t l i n e s t y l e f o r zone
% @param [out] marker − Plo t l i n e marker
% @todo

%Ripped from Alec Weiss ’ s (Sheekaboom) code :
%h t t p s :// g i t hu b . com/Sheekaboom/WeissTools / t r e e /master/WeissTools /

MATLAB

%Color l i s t
c o l o r s = ([0 ,50 , 135 ; 200 ,20 ,30 ; 0 ,120 ,0 ; 120 ,90 ,0 ; . . .

150 ,50 , 165 ; 10 , 145 ,120 ; 0 ,0 ,0 ; 220 ,150 ,20 ; . . .
200 ,150 ,200 ; 255 ,255 ,0 ; 255 ,0 , 128 ; 150 ,150 ,0 ; . . .
0 , 255 ,255 ; 0 ,255 ,0 ; 255 ,80 ,255]/255) ;

%LineS ty l e
l i n e s t y l e s = ’ −|−−|:|−. ’ ;
markers = ’ . |+ | o | ∗ | x | s | d | ˆ | v |>|<|p | h ’ ;
l s c e l l = repmat (s t r s p l i t (l i n e s t y l e s , ’ | ’) , 1 , 4) ;
mk ce l l = s t r s p l i t (markers , ’ | ’) ;

155

%Output
c o l o r = c o l o r s (mod(seed −1, length (c o l o r s)) +1 , :) ;
l i n e s t y l e = l s c e l l {mod(seed −1, length (l s c e l l)) +1};
marker = mk ce l l {mod(seed −1, length (mk ce l l)) +1};

end %End of f unc t i on

function p lo t 2d pos i t i on mk2 (comp l e t e input s t ruc t , i npu t zone s t ru c t ,
map approx , r o t a t e r e s u l t s a n g l e)
% @br ie f −

% @param [in] c omp l e t e i n pu t s t r u c t −

% @param [in] i n p u t z o n e s t r u c t −

% @param [in] map approx − array o f coord ina t e s to make the l i n e
% approximation o f the map
% @param [in] r o t a t e r e s u l t s a n g l e − Angle to r o t a t e a l l r e s u l t s by
% @todo − Finish comments , make beacons the same co l o r as l i n e s ,

put
% b l a c k c i r c l e around beacons to s i g n i f y they are not apart o f

the data

%Rotat ion matrix
map approx rot (: , [1 , 2]) = r o t a t e 2d c oo rd i n a t e s (map approx (: , 1) ,

map approx (: , 2) , r o t a t e r e s u l t s a n g l e) ;
map approx rot (: , [3 , 4]) = r o t a t e 2d c oo rd i n a t e s (map approx (: , 3) ,

map approx (: , 4) , r o t a t e r e s u l t s a n g l e) ;

f igure ;
hold on
grid minor
xlabel (’X Coordinate (f t) ’)
ylabel (’Y Coordinate (f t) ’)
set (gca , ’ FontSize ’ , 24)
%Plot Map Approximation
for index = 1 : 1 : s ize (map approx , 1)

plot (map approx rot (index , [1 , 3]) , map approx rot (index , [2 , 4]) , ’ k
’ , ’ LineWidth ’ , 2)

end

%Plot l i n e s
for index = 1 : 1 : s ize (comp l e t e input s t ruc t , 2)

temp x = comp l e t e i npu t s t ru c t (index) . xy coord (: , 1) ;
temp y = comp l e t e i npu t s t ru c t (index) . xy coord (: , 2) ;
temp rot = ro t a t e 2d c oo rd i n a t e s (temp x , temp y ,

r o t a t e r e s u l t s a n g l e) ;
temp co lor = comp l e t e i npu t s t ru c t (index) . c o l o r ;
t emp l i n e s t y l e = comp l e t e i npu t s t ru c t (index) . l i n e s t y l e ;

156

temp marker = comp l e t e i npu t s t ru c t (index) . marker ;
%p l o t (temp x , temp y , ’ L ineSty l e ’ , t emp l i n e s t y l e , ’ Color ’ ,

temp color , ’ Marker ’ , temp marker , ’ LineWidth ’ , 4 , ’ MarkerSize
’ , 15) ;

plot (temp rot (: , 1) , temp rot (: , 2) , ’ L ineSty l e ’ , t emp l i n e s t y l e , ’
Color ’ , temp color , ’Marker ’ , temp marker , ’ LineWidth ’ , 4) ;

clear temp x temp y temp color t emp l i n e s t y l e temp marker
end

%Plot beacon l o c a t i o n s
for index = 1 : 1 : s ize (i npu t zone s t ru c t , 2)

beacon x temp = tab l e2a r ray (i npu t z on e s t r u c t (index) . xy (: , 1)) ;
beacon y temp = tab l e2a r ray (i npu t z on e s t r u c t (index) . xy (: , 2)) ;
beacon rot = ro t a t e 2d c oo rd i n a t e s (beacon x temp , beacon y temp ,

r o t a t e r e s u l t s a n g l e) ;
plot (beacon rot (: , 1) , beacon rot (: , 2) , ’ rd ’ , ’ LineWidth ’ , 2)

end

hold o f f
end

function [t a g t a i l a r r a y] = tag name pu l l func (tag ident var names ,
zone index , z one t ab l e)

% @br ie f Takes in the zone in f o and the zone index to output what are
the

% t a i l s (the l a s t coup le o f d i g i t s) o f the RFID tag i d e n t i f i e r s f o r
t ha t

% zone
% @param [in] t ag i den t var names − 1xM c e l l , where M i s maximum

po s s i b l e
% number o f t a g s f o r any g iven zone
% @param [in] zone index − doub le va lue t ha t determine which zone we are
% opera t ing in
% @param [in] z on e t a b l e − Complete t a bu l a r zone data o f s i z e NxP.
% Where N i s the t o t a l number o f zones and P i s the number o f

v a r i a b l e s
% @param [out] t a g t a i l a r r a y − An array o f doub l e s corresponding to the
% p o s s i b l e t a i l s t h a t w i l l be seen in t h i s zone
% @todo

t a g t a i l s = tab l e2a r ray (zone tab l e (zone index , [tag ident var names])) ;

%Cutdown NaN en t r i e s
t a g t a i l a r r a y = t a g t a i l s (˜ isnan (t a g t a i l s)) ;

end%end o f f unc t i on

157

function [o u tpu t r s s i , output phase , output ident , output t ime] =
sp l i t r f i d d a t a by an t e nn a and t a g i d (i npu t s t ru c t , i npu t r f i d da t a ,
num ant)

% @br ie f Function t ha t t a k e s in the complete RFID data and p a r t i t i o n s
i t

% v ia the t a g s in the zone and the number o f msmnt antennas
% @param [in] i n p u t s t r u c t − Complete input data s t r u c t
% @param [in] i n p u t r f i d d a t a − s t r u c t t h a t con ta ins a l l o f the r f i d

data
% @param [in] num ant − number o f antennas on a c q u i s i t i o n system
% @param [out] o u t p u t r s s i − Rssi va l u e s in c e l l array o f s i z e QxR,

where Q i s the number
% of t a g s a s s o c i a t e d wi th the zone and R i s the number o f msmnt

antennas
% @param [out] ou tpu t phase − phase va l u e s in c e l l array o f s i z e QxR
% @param [out] o u t pu t i d en t − Tag ID va lu e s in c e l l array o f s i z e QxR
% @param [out] ou tpu t t ime − Time va l u e s in c e l l array o f s i z e QxR
% @todo

temp idx beg in = inpu t s t r u c t . r f i d i d x b e g i n ; %Shor ter var name
temp idx end = inpu t s t r u c t . r f i d i d x e nd ; %Shor ter var name

%Separate rss , phase , and ident , i n t o separa t e arrays based on
antenna

%Note : This w i l l not work wi th the prev ious a c qu i s t i on code t ha t
d id not l i s t

%the antenna ! !
t emp r s s i da ta = i npu t r f i d d a t a . r s s i (temp idx beg in : temp idx end

, 1) ;
temp phase data = i npu t r f i d d a t a . phase (temp idx beg in : temp idx end

, 1) ;
t emp tag ident data = i npu t r f i d d a t a . t a g i d en t (temp idx beg in :

temp idx end , 1) ;
temp ant data = i npu t r f i d d a t a . antenna (temp idx beg in : temp idx end

, 1) ;
temp time data = i npu t r f i d d a t a . r eade r t ime (temp idx beg in :

temp idx end , 1) ;
for ant index = 1 : 1 : num ant

%Find i nd i c e s o f the r f i d data f o r t h i s zone , t h a t corresponded
to

%which antenna
an t i n d i c e s = find (temp ant data == ant index) ;
t emp a n t s p l i t r s s i {1 , ant index } = temp r s s i da ta (an t i nd i c e s

, 1) ;
t emp ant sp l i t pha s e {1 , ant index } = temp phase data (an t i nd i c e s

, 1) ;
t emp an t s p l i t i d e n t {1 , ant index } = temp tag ident data (

an t i nd i c e s , 1) ;

158

t emp ant sp l i t t ime {1 , ant index } = temp time data (an t i nd i c e s
, 1) ;

clear an t i n d i c e s

%Separate the data f u r t h e r based on tag id
for tag index = 1 : 1 : s ize (i n pu t s t r u c t . p o s s i b l e t a g t a i l s , 2)

%Find i nd i c e s t ha t correspond to the s p e c i f i c tag id
t h i s i t e r t a g t a i l = i npu t s t r u c t . p o s s i b l e t a g t a i l s (

tag index) ;
i d i n d i c e s = find (t emp an t s p l i t i d e n t {1 , ant index } ==

t h i s i t e r t a g t a i l) ;

i f ˜isempty (i d i n d i c e s) %id array i s not empty
t emp a n t t a g s p l i t r s s i { tag index , ant index } =

t emp an t s p l i t r s s i {1 , ant index }(i d i n d i c e s) ;
t emp an t t ag sp l i t pha s e { tag index , ant index } =

temp ant sp l i t pha s e {1 , ant index }(i d i n d i c e s) ;
t emp an t t a g s p l i t i d e n t { tag index , ant index } =

temp an t s p l i t i d e n t {1 , ant index }(i d i n d i c e s) ;
t emp an t t a g sp l i t t ime { tag index , ant index } =

temp ant sp l i t t ime {1 , ant index }(i d i n d i c e s) ;
else %id array i s empty

t emp a n t t a g s p l i t r s s i { tag index , ant index } = [] ;
t emp an t t ag sp l i t pha s e { tag index , ant index } = [] ;
t emp an t t a g s p l i t i d e n t { tag index , ant index } = [] ;
t emp an t t a g sp l i t t ime { tag index , ant index } = [] ;

end %End of i f e l s e

clear i d i n d i c e s
end %end o f tag id f o r loop

end %end o f antenna index f o r loop

%F ina l i z e output
ou t pu t r s s i = t emp an t t a g s p l i t r s s i ;
output phase = t emp an t t ag sp l i t pha s e ;
output ident = t emp an t t a g s p l i t i d e n t ;
output t ime = t emp an t t a g sp l i t t ime ;
end%End of f unc t i on

function p l o t r f i d r e s u l t s (i npu t s t ru c t , num antennas)
% @br ie f − A void func t i on t ha t p l o t s the r s s i va l u e s o f the r f i d data .
% @param [in] i n p u t s t r u c t − Fu l l y deve loped data s t r u c t (a l l zone
% t r a n s i t i o n s)
% @param [in] num antennas − Number o f antennas used by the a c qu i s t i on
% system
% @todo

159

%Each antenna w i l l have i t s own l i n e s t y l e
%Each tag w i l l have i t s own co l o r
for index = 1 : 1 : num antennas

[˜ , t emp l i n e s t y l e ,˜]= s e t z on e un i qu e c o l o r (index) ;
a n t l i n e s t y l e a r r a y (index) = s t r i n g (t emp l i n e s t y l e) ;
clear t emp l i n e s t y l e

end

%Loop across zones
for index = 1 : 1 : s ize (i npu t s t ru c t , 2)

%Give each tag a unique co l o r
for c o l o r i nd ex = 1 : 1 : s ize (i n pu t s t r u c t (index) . s o r t e d r s s i , 1)

[temp color ,˜ ,˜]= s e t z on e un i qu e c o l o r (c o l o r i nd ex) ;
t a g c o l o r a r r a y (co l o r i ndex , :) = temp color ;
clear temp co lor

end

%Generate new f i g u r e f o r each zone t r a n s i t i o n
f igure

hold on
set (gca , ’ FontSize ’ , 24)
grid minor
xlabel (’Time(s) ’)
ylabel (’ RSSi (dBm) ’)
t i t l e ([’ Zone Trans i t i on : ’ ,num2str(index) , ’ , Zone #: ’ ,num2str(

i n pu t s t r u c t (index) . zone)])
l e g end en t ry a r r ay = [] ; %Clear out the l egend entry array
for tag index = 1 : 1 : s ize (i n pu t s t r u c t (index) . s o r t e d r s s i , 1) %Loop

across t a g s
for ant index = 1 : 1 : s ize (i n pu t s t r u c t (index) . s o r t e d r s s i , 2) %

Loop across antennas
temp x = inpu t s t r u c t (index) . s o r t ed t ime { tag index ,

ant index } ;
temp y = inpu t s t r u c t (index) . s o r t e d r s s i { tag index ,

ant index } ;
% temp co lor = i n p u t s t r u c t (index) . c o l o r ;

t emp l i n e s t y l e = a n t l i n e s t y l e a r r a y (ant index) ;
% temp marker = s t r u c t (index) . marker ;

i f (˜ isempty (temp x) && ˜isempty (temp y))
stem(temp x , temp y , ’ Color ’ , t a g c o l o r a r r a y (tag index , :)

, ’ L ineSty l e ’ , t emp l i n e s t y l e , ’ LineWidth ’ , 2)
temp tag ident = i npu t s t r u c t (index) . s o r t e d i d en t {

tag index , ant index } (1 , 1) ;
t emp legend entry = s t r i n g ([’Tag : ’ ,num2str(

temp tag ident) , ’ , Ant : ’ ,num2str(ant index)]) ;
l e g end en t ry a r r ay = cat (2 , l e g end ent ry a r ray ,

temp legend entry) ;

160

clear temp x temp y temp tag ident temp legend entry
end%End of i f e l s e

end

end

legend (l e g end en t ry a r r ay)
hold o f f

end %End of zone f o r loop
end %end o f f unc t i on

function [out 2d pos , ou t t ime s t ep] = i n i t i a l p o s c a l c f x n (i npu t s t ru c t
, b a s e l i n e xy e s t ima t e)

%IF RFID DATA AVAILABLE, USE RFID DATA
i f (s ize (i n pu t s t r u c t . r f i d 2 d p o s i t i o n , 1) > 0) %Make sure t he r e i s

an RFID po s i t i o n
out 2d pos = i npu t s t r u c t . r f i d 2 d p o s i t i o n (1 , 1 : 2) ;
ou t t ime s t ep = inpu t s t r u c t . r f i d 2 d p o s i t i o n (1 , 3) ;

%IF NOT, ESTIMATE IT FROM THE TAGS AND THE PREVIOUS ZONE TRANSITION
else

out 2d pos = ba s e l i n e xy e s t ima t e ; %Hardcoded appr i x imat ions
out t ime s t ep = inpu t s t r u c t . c omp l e t e r f i d t ime da ta (1 , 1) ; %

Assign t h i s as the time o f f i r s t tag read
end %End of i f −e l s e

end %End of f unc t i on

function [output matr ix] = r o t a t e 2d c oo rd i n a t e s (input ar ray x ,
input ar ray y , r o t ang l e)

% @br ie f Function t ha t t a k e s arrays o f x , y coord ina t e s and r o t a t e s them
% @param [in] i npu t a r r ay x − x coord ina te matrix o f e i t h e r l e n g t h 1xN

or
% Nx1
% @param [in] i npu t a r r ay y − y coord ina te matrix o f e i t h e r l e n g t h 1xN

or
% Nx1
% @param [in] r o t an g l e − r o t a t i on ang l e in degrees
% @param [out] ou tpu t matr i x − Nx2 matrix where N i s the number o f
% coord ina t e s and the 1 s t column are the x coord ina t e s and the 2nd

column
% are the y coord ina t e s

output matr ix = zeros ([length (i nput a r ray x) , 2]) ; %Prea l l o c a t e
for index = 1 : 1 : length (i nput a r ray x)

output matr ix (index , 1) = (input a r ray x (index) ∗ cosd (r o t ang l e))
− (i nput a r ray y (index) ∗ s ind (r o t ang l e)) ;

161

output matr ix (index , 2) = (input a r ray x (index) ∗ s ind (r o t ang l e))
+ (input a r ray y (index) ∗ cosd (r o t ang l e)) ;

end

end %End of f unc t i on

162

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Acknowledgments
	Dedication
	introduction
	Motivation
	Previous Solutions
	Radio Frequency Identification
	Proposed solution and Thesis Layout

	Data Acquisition Prototype
	Complete System Overview
	Inertial Measurement Unit
	RFID Reader
	RFID Tags
	Circularly Polarized Antennas and Mounts
	Power Circuit
	Raspberry Pi and Bash Scripting
	Acquisition Code
	RFID Reader Control
	IMU Control

	Conclusion

	Software
	Overview
	Pre-processing Measurements and Scripts
	Look-Up-Table Generation
	Zone Information
	Zone Connection Generator
	Map Approximation
	RFID Data Interleaver

	Post-processing
	RFID Categorization
	IMU Zone Assignment
	RFID 2D Position
	IMU Pedometer
	IMU Heading
	Combined 2D positioning
	Geometric Point-to-Curve Map Matching
	Plotting

	System Measurements
	Experimental Results
	Brown Building Experiment
	Edgar Mine Experiment

	Discussion, Future Work, and Conclusion
	Discussion
	RFID System Improvements
	IMU Improvements
	Towards a Real-Time Algorithm
	Conclusion

	References Cited
	Cost Breakdown of the Prototype
	Data Acquisition Code
	MATLAB Code

