Simulation of a Nonlinear Frequency Multiplier using the FDTD Technique

Joshua M. Kast and Atef Z. Elsherbeni

jkast@mines.edu aelsherb@mines.edu

Antenna, RFID, and Computational EM Group

Introduction

- Common RF devices, such as mixers and detectors, employ nonlinear components to function.
- Increasingly, nonlinear effects are employed to improve energy efficiency and thermal properties of modern amplifiers.
- Simulation is challenging with nonlinear devices frequency-domain approaches break down.
- Goal: use nonlinear lumped-element devices integrated in FDTD grid to demonstrate nonlinear effects relevant to RF communications.

- Linear devices include resistors, inductors, capacitors.
- Nonlinear behavior occurs in diodes, transistors, and ferrites.

- Linear devices include resistors, inductors, capacitors.
- Nonlinear behavior occurs in diodes, transistors, and ferrites.
- Example: resistor and diode
 - I/V characteristic for resistor is defined by Ohm's law:

 $I = \frac{1}{R}$ Linear Equation

Voltage (V)

- Linear devices include resistors, inductors, capacitors.
- Nonlinear behavior occurs in diodes, transistors, and ferrites.
- Example: resistor and diode
 - I/V characteristic for resistor is defined by Ohm's law: $I = \frac{V}{R}$
 - I/V characteristic for diode is defined by an exponential function:

$$I_D = I_S \left[e^{\frac{V_D}{\eta V_T}} - 1 \right]$$

Exponential Equation

- Linear devices include resistors, inductors, capacitors.
- Nonlinear behavior occurs in diodes, transistors, and ferrites.
- Example: resistor and diode
 - I/V characteristic for resistor is defined by Ohm's law: $I = \frac{V}{R}$
 - I/V characteristic for diode is defined by an exponential function:

$$I_D = I_S \left[e^{\frac{V_D}{\eta V_T}} - 1 \right]$$

Exponential Equation

Nonlinearity in The Frequency Domain

 Example: Excite a diode with a sinusoidal voltage source, measure current.

$$V_D(t) = a \cos(\omega t)$$
 Substitute \rightarrow $I_D = I_S \left[e^{\frac{V_D}{\eta V_T}} - 1 \right]$

$$I_D(t) = I_S \left[e^{\frac{a \cos(\omega t)}{\eta V_T}} - 1 \right]$$

ELECTRICAL ENGINEERING

OLORADO SCHOOL OF MINES

Nonlinearity in The Frequency Domain

Diode With Series Resistor

• FDTD Domain: 40 x 38 x 43 (65360) cells

- CPML Boundaries 10 cells with 8 cell air-buffer
- Cell size dx = dy = dz = 0.05 mm
- Excitation: 10 V_{pp}, 5 GHz sinusoidal

ELECTRICAL ENGINEERING

ORADO SCHOOL OF MINES

Diode With Series Resistor: Time-Domain Results

ARC

Diode With Series Resistor: Frequency Domain Results

RC

Diode with Low Pass Filter

Diode with Low Pass Filter

Conclusions and Future Work

 FDTD provides useful simulations of nonlinear components integrated in microwave circuits.

 Future work: analyze the results using the nonlinear X-parameters

4/13/2020

References

- [1] W. Shockley, "The theory of p-n junctions in semiconductors and p-n junction transistors," Bell Syst. Tech. J., vol. 28, no. 3, pp. 435–489, Jul. 1949.
- [2] W. M. Haynes, Ed., CRC Handbook of Chemistry and Physics, 92nd Edition, 92 edition. Boca Raton, Fla.: CRC Press, 2011.
- [3] A. Z. Elsherbeni and V. Demir, The finite-difference time-domain method for electromagnetics with Matlab simulations. Raleigh: The Institution of Engineering and Technology, 2016.
- [4] Keysight, Santa Rosa, CA, USA. 2019. Advanced Design System 2019 [Online]. Available: http://www.keysight.comen/pc-1297113/advanced-design-system-ads?&cc=US&lc=eng
- [5] S. A. Maas, Nonlinear Microwave Circuits. Artech House, 1988.
- [6] K. ElMahgoub and A. Z. Elsherbeni, "FDTD Implementations of Integrated Dependent Sources in Full- Wave Electromagnetic Simulations," vol. 29, no. 12, p. 10, 2014

