Spring 2020 Research Symposium

One Dimensional FDTD in Dispersive Media for Biomedical Imaging Applications

Rachel Lumnitzer, <u>rachelgottlieb@mymail.mines.edu</u> Allison Tanner, <u>tanner@mymail.mines.edu</u> Atef Elsherbeni, <u>aelsherb@mines.edu</u>

Project Motivation

- MRI tradeoffs
- Need for investigation of SAR safe exposure limits at higher frequencies for biomedical imaging
- Simulations necessary to support validity of cutting edge technology

Image Shown: Carlisle Regional MRI Brain Scan 6/6/2019

Project Stages

Stage 1

 Analyzed the relative permittivity and conductivity of over 45 biological tissues using the Debye Model

Stage 2

- Used the Debye coefficients obtained in Stage 1 to analyze a Multiphysics model of the head using one dimensional finite difference time domain (FDTD) method
- Project focused on 100 MHz to 100 GHz in line with biomedical imaging applications

Tissue Properties - Numerical Data Acquired

Aorta Tissue 100 MHz – 2 GHz			Brain Grey Matter Tissue 2 GHz – 20 GHz			Muscle Tissue 20 GHz – 100 GHz		
Frequency (GHz)	Relative Permittivity ϵ'	Conductivity [S/m]	Frequency (GHz)	Relative Permittivity ϵ'	Conductivity [S/m]	Frequency (GHz)	Relative Permittivity ϵ'	Conductivity [S/m]
0.100	59.780	0.462	2.00	49.692	1.511	20.00	30.951	24.673
0.499	46.230	0.586	5.01	45.138	4.106	35.00	20.423	39.649
1.00	44.558	0.729	10.00	38.111	10.311	50.00	15.037	48.688
1.50	43.745	0.924	15.01	31.866	16.875	75.00	10.698	57.388
2.00	43.089	1.171	20.00	22.732	26.834	100.00	8.631	62.499

RC

[1] http://niremf.ifac.cnr.it/tissprop/ [Online website 2020].

Debye Model for Dispersive Media Properties

- Many models for frequency-dependent permittivity
- Debye Model appropriate for dispersive media such as biological tissues
- Debye coefficients: $\Delta \varepsilon_k \tau_k \varepsilon_\infty$
- ε_{∞} : relative permittivity at infinite frequency.
- $\Delta \varepsilon_k$: relative permittivity.
- τ_k : relaxation time
- K: number of poles

$$\epsilon_r^*(\omega) = \epsilon_\infty + \sum_{k=1}^N \frac{\Delta \epsilon_k}{1 + j\omega \tau_k}$$
$$= \epsilon' - j\epsilon''$$

- Parameters such as conductivity and relative permittivity can be measured at several frequencies
- With set of experimental permittivity, Debye parameters can be obtained.

Debye FDTD Formulation: A. Elsherbeni and Veysel Demir, "The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB Simulations", 2nd edition

Dielectric Properties and Debye Model

Muscle 20 GHz-100GHz

6

Comparison of Debye Model to Measured Data

Aorta Tissue

$$\epsilon_r^*(\omega) = \epsilon_\infty + \sum_{k=1}^N \frac{\Delta \epsilon_k}{1 + j\omega \tau_k}$$

- Frequency step size = 0.95 MHz
- Obtained coefficients:
 - ε_∞ = 24.470
 - Δε's = [19.900 10.265 960.303]
 - τ's = [0.025 0.799 19.115]
- # poles used: N = 3 (3 terms Debye)
- Max error between model and data
 - ε': 0.513 %
 - ε": 1.252 %

4/13/2020

SAR Definition and Computational Sections

- 3-D Multiphysics head model consists of 21 biological tissues
- Two version of model

4/13/2020

- Layer A Model No eye tissue
- Layer B Model Eye tissue
- SAR equation for 1-D multi-layer model •

 $SAR(i) = \frac{\sigma(i)}{2\rho(i)} (|E(i)|^2)$

- σ and ρ are conductivity [S/m] and mass density [kg/m³] of tissue, respectively, and *i* denotes indexed cell
- Maximum SAR values increase at frequencies close to 100 GHz while penetration depths decrease substantially

Horizontal cross-section of the 3D human head model

LOCAL SAR DISTRIBUTION FOR LAYER A MODEL

0.5 – 1.5 GHz

Ο

LOCAL SAR DISTRIBUTION FOR LAYER B MODEL

TEMPERATURE RISE DISTRIBUTION FOR LAYER A MODEL

TEMPERATURE RISE DISTRIBUTION FOR LAYER B MODEL

Conclusions

- Dielectric properties for over 45 biological tissues are analyzed using Debye Model with maximum errors for coefficients of 3.047 and 3.958 percent, respectively.
- One dimensional FDTD formulation with auxiliary differential equation is implemented.
- FDTD method is capable of accurately simulating the wave propagation for SAR and temperature rise characteristics.
- Maximum SAR values of 0.616 W/kg has been shown for two cuts to be less than the ICNRP exposure limits.
- Maximum temperature rises are less than 0.73 °C and 1.03 °C for layers A and B, respectively.
- Other areas of the body will be analyzed using the Debye coefficients and FDTD method.

